Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn đặt \(\sqrt{x}=a\) , a> 0
Thay \(\sqrt{x}=a\) vô biểu thức => rút gọn ra => thay trở lại
\(P=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{\sqrt{x}-2}{\sqrt{x}-1}\)
ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)
\(=\frac{\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\sqrt{x}-2}{\sqrt{x}-1}\)
\(=\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=2\)
=> Với mọi \(\hept{\begin{cases}x\ge0\\x\ne1\end{cases}}\)thì P = 2
Đề sai à --
a) Đk \(x>0\)và \(x\ne4\)
=\(\left(\frac{\sqrt{x}-2+\sqrt{x}+2}{x-4}\right)\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2\sqrt{x}}{x-4}\).\(\frac{\sqrt{x}-2}{\sqrt{x}}\)
=\(\frac{2}{\sqrt{x}+2}\)
b) Để \(\frac{2}{\sqrt{x}+2}>\frac{1}{2}\)
\(\Leftrightarrow\frac{4-\sqrt{x}-2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
\(\Leftrightarrow\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
Vì \(2\left(\sqrt{x}+2\right)>0\)
mà\(\frac{-\sqrt{x}+2}{2\left(\sqrt{x}+2\right)}\)\(>0\)
nên \(-\sqrt{x}+2>0\)\(\Leftrightarrow x< 4\)
Vậy vs \(0< x< 4\)thì \(A>\frac{1}{2}\)
Bài 1 : Điều kiện xác định : \(x\ne\pm1\)
\(K=\left(\frac{x+1}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x^2-1}{x^2}\)
\(K=\frac{2}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{x^2}=\frac{2}{x^2}\)
Nhận thấy giá trị của x càng tăng thì giá trị của M càng giảm
mặt khác , giá trị của x lại không giảm quá 0 nên ta không thể nào xác định được giá trị lớn nhất của K
a)ĐKXĐ:
\(x-1\ne0;x+1\ne0;x\ne0\)
\(\Leftrightarrow x\ne1;x\ne-1;x\ne0\)
b)\(K=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{x^2-1}\right).\frac{x+2003}{x}\)
\(=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+2003}{x}\)
\(=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-4x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{x+2003}{x}\)
\(=\frac{x^2+2x+1+x^2-2x+1+x^2-4x-1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{3x^2-4x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{3x^2-3x-x+1}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{3x.\left(x-1\right)-\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{\left(x-1\right)\left(3x-1\right)}{\left(x-1\right)\left(x+1\right)}.\frac{x+2003}{x}\)
\(=\frac{\left(3x-1\right)\left(x+2003\right)}{\left(x+1\right).x}\)
\(=\frac{3x^2+6008x-2003}{x^2+x}\)
câu c bí