K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

a. ĐK: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

\(A=\frac{2\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{5-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{2\sqrt{x}+2+2\sqrt{x}-2-5+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{5\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\\ =\frac{5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{5}{\sqrt{x}+1}\)

b. Khi x=9 ta có:

\(A=\frac{5}{\sqrt{9}+1}=\frac{5}{3+1}=\frac{5}{4}\)

c. Để A ∈ Z thì \(5⋮\sqrt{x}+1hay\sqrt{x}+1\inƯ\left(5\right)\)

Ta có bảng sau:

\(\sqrt{x}+1\) 1 -1 5 -5
\(\sqrt{x}\) 0 -2 4 -6
\(x\) 0 (loại) loại 16 loại

Vậy ...................

3 tháng 7 2019

ĐKXĐ : \(x\ne1\)

a) \(A=\frac{2}{\sqrt{x}-1}+\frac{2}{\sqrt{x}+1}-\frac{5-\sqrt{x}}{x-1}\)

\(A=\frac{2\left(\sqrt{x}+1\right)+2\left(\sqrt{x}-1\right)-5+\sqrt{x}}{x-1}\)

\(A=\frac{-5+5\sqrt{x}}{x-1}\)

\(A=\frac{5\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(A=\frac{5}{\sqrt{x}+1}\)

b) Khi \(x=9\)ta có \(A=\frac{5}{\sqrt{9}+1}=\frac{5}{4}\)

c) \(A\in Z\Leftrightarrow5⋮\sqrt{x}+1\)

\(\Leftrightarrow\sqrt{x}+1\inƯ\left(5\right)=\left\{1;5\right\}\)( vì \(\sqrt{x}+1\ge1\forall x\))

\(\Leftrightarrow x\in\left\{0;16\right\}\)( thỏa )

Vậy....

24 tháng 7 2016

ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)

a) \(A=\frac{2\sqrt{x}-9}{x-2\sqrt{x}-3\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}\)

\(A=\frac{2\sqrt{x}-9-\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\)

\(A=\frac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{\sqrt{x}-3}\)

24 tháng 7 2016

b) Thay \(x=\frac{1}{9}\)vào A, ta có:

\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=\frac{\frac{1}{3}+1}{\frac{1}{3}-3}=\frac{\frac{4}{3}}{\frac{-8}{3}}=-\frac{1}{2}\)

30 tháng 7 2019

\(ĐKXĐ:\)

\(\hept{\begin{cases}x-9\ne0\\\sqrt{x}-2\ne0\\\sqrt{x}+3\ne0;x\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ne9\\x\ne4\\x\ge0\end{cases}}\)

Vậy...................................................

30 tháng 7 2019

\(A=\left(\frac{x-3\sqrt{x}}{x-9}-1\right):\left(\frac{9-x}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-1\right):\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+3}\right)\)

\(=\frac{\sqrt{x}-\sqrt{x}-3}{\left(\sqrt{x}+3\right)}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\left(\frac{9-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{x-9}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}-\frac{x-4}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{9-x+x-9-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}:\frac{-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{-3}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4-x}\)

\(=\frac{3\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\)

\(=\frac{3}{\left(2+\sqrt{x}\right)}\)

27 tháng 7 2018

KHÔNG BIẾT

26 tháng 2 2020

M = \(\frac{2\sqrt{x}-9x}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\left(\sqrt{x}+3\right)\left(3-\sqrt{x}\right)+\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)}\)

    =\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{9-x+2x-3\sqrt{x}}{x-5\sqrt{x}+6}\)

    =\(\frac{x-\sqrt{x}}{x-5\sqrt{x}+6}\)