K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019
  1. TA CÓ A>\(\frac{2010}{2009^2+1+2008}\) +\(\frac{2010}{2009^2+2+2007}\) +...+\(\frac{2010}{2009^2+2009}\)                                                     \(\Rightarrow\)A>2009.\(\frac{2010}{2009^2+2009}\)\(\Rightarrow\)A>\(\frac{2009.2010}{2009.2010}\) \(\Rightarrow\) A>1   (1)                                                                         2.TA CÓ A<\(\frac{2010}{2009^2}\) +\(\frac{2010}{2009^2}\) +...+\(\frac{2010}{2009^2}\)                                                                                               \(\Rightarrow\) A<2009.\(\frac{2010}{2009^2}\) \(\Rightarrow\) A<\(\frac{2010}{2009}\) <2 \(\Rightarrow\) A<2     (2)                                                                                          TỪ (1) VÀ (2) SUY RA 1<A<2 .VẬY A KHÔNG PHẢI SỐ NGUYÊN DƯƠNG    (dpcm)
5 tháng 2 2016

Do 20092010- 2 < 20092011- 2 ⇒ B < 1

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

2 tháng 4 2016

nhân A 2009 lần và B 2009 lần mà so sánh

2 tháng 4 2016

ta có:

B=(2009^2010-2)/(2009^2011-2)<1

=>(2009^2010-2)/(2009^2011-2)<(2009^2010-2)+2011/(2009^2011-2)+2011=(2009^2010+2009)/(2009^2011+2009)

=[2009*(2009^2009+1)]/[2009*(2009^2010+1)]=(2009^2009+1)/(2009^2010+1)=A

Vậy A=B

Đúng thì !

11 tháng 7 2017

thầy ơi bài này làm rồi

11 tháng 7 2017

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Vậy:

\(\frac{a\cdot c}{b\cdot d}=\frac{bk\cdot dk}{b\cdot d}=\frac{k^2\cdot\left[b\cdot d\right]}{b\cdot d}=k^2\)

\(\frac{2009a^2+2010c^2}{2009b^2+2010d^2}=\frac{2009\left[bk\right]^2+2010\left[dk\right]^2}{2009b^2+2010d^2}=\frac{2009\cdot b^2k^2+201d^2k^2}{2009b^2+2010d^2}=\frac{k^2\left[2009b^2+2010d^2\right]}{2009b^2+2010d^2}=k^2\)Vậy khi \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{ac}{bd}=\frac{2009a^2+2010c^2}{2009b^2+2010d^2}\)

5 tháng 2 2016

Đặt A = \(\frac{2009^{2009}+1}{2009^{2010}+1}\)

      B = \(\frac{2009^{2010}-2}{2009^{2011}-2}\)

Do 20092010- 2 < 20092011- 2 => \(B<1\)

\(B=\frac{2009^{2010}-2}{2009^{2011}-2}<\frac{2009^{2010}-2+2011}{2009^{2011}-2+2011}=\frac{2009^{2010}+2009}{2009^{2011}+2009}=\frac{2009\left(1+2009^{2009}\right)}{2009\left(1+2009^{2010}\right)}\)

\(=\frac{2009^{2009}+1}{2009^{2010}+1}=A\Rightarrow\)B < A

27 tháng 9 2016

+ \(\frac{a}{2009}=\frac{b}{2010}\Leftrightarrow2010a=2009b.\)(1)

+ \(\frac{a+2009}{a-2009}=\frac{b+2010}{b-2010}\Rightarrow\left(a+2009\right)\left(b-2010\right)=\left(a-2009\right)\left(b+2010\right)\)

\(\Rightarrow ab-2010a+2009b-2009.2010=ab+2010a-2009b-2009.2010\)

\(\Leftrightarrow2.2009.b=2.2010.a\Leftrightarrow2010a=2009b\)(2)

Từ (1) và (2) => dpcm

13 tháng 10 2018

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{2009}}{a_{2010}}=\frac{a_1+a_2+...+a_{2009}}{a_2+a_3+...+a_{2010}}\)

\(\Rightarrow\)\(\frac{a_1}{a_2}=\frac{a_1+a_2+...+a_{2009}}{a_2+a_3+...+a_{2010}}\)

\(\Rightarrow\)\(\left(\frac{a_1}{a_2}\right)^{2009}=\left(\frac{a_1+a_2+...+a_{2009}}{a_2+a_3+...+a_{2010}}\right)^{2009}\) \(\left(1\right)\)

Lại có : 

\(\left(\frac{a_1}{a_2}\right)^{2009}=\frac{a_1}{a_2}.\frac{a_1}{a_2}.....\frac{a_1}{a_2}=\frac{a_1}{a_2}.\frac{a_2}{a_3}.....\frac{a_{2009}}{a_{2010}}=\frac{a_1.a_2.....a_{2009}}{a_2.a_3.....a_{2010}}=\frac{a_1}{a_{2010}}\) \(\left(2\right)\)

Từ (1) và (2) suy ra đpcm :  \(\frac{a_1}{a_{2010}}=\left(\frac{a_1+a_2+...+a_{2009}}{a_2+a_3+...+a_{2010}}\right)^{2009}\) \(\left[=\left(\frac{a_1}{a_2}\right)^{2009}\right]\)

Chúc bạn học tốt ~ 

14 tháng 10 2018

Thank you very much.