Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}+\frac{1}{1024}\)
= \(\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+...+\left(\frac{1}{256}-\frac{1}{512}\right)+\left(\frac{1}{512}-\frac{1}{1024}\right)\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{256}-\frac{1}{512}+\frac{1}{512}-\frac{1}{1024}\)
= \(1-\frac{1}{1024}\)
= \(\frac{1023}{1024}\)
b/ \(\frac{1}{8}+\frac{1}{48}+\frac{1}{80}+...+\frac{1}{10200}\)
= \(\frac{1}{8}+\frac{1}{6\times8}+\frac{1}{8\times10}+...+\frac{1}{100\times102}\)
= \(\frac{1}{8}+\frac{1}{2}\times\left(\frac{2}{6\times8}+\frac{2}{8\times10}+...+\frac{2}{100\times102}\right)\)
= \(\frac{1}{8}+\frac{1}{2}\times\left(\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{102}\right)\)
= \(\frac{1}{8}+\frac{1}{2}\times\left(\frac{1}{6}-\frac{1}{102}\right)\)
= \(\frac{1}{8}+\frac{1}{2}\times\frac{8}{51}\)
= \(\frac{1}{8}+\frac{4}{51}\)
= \(\frac{83}{408}\)
ta có : A=1/2+1/4+..+1/1024
=> A=1/21+1/22+..+1/210
=> A.2=(1/21+1/22+..+1/210).2
=> A.2=1+1/21+1/22+..+1/29
=> 2A-A=(1+1/21+1/22+..+1/29)-(1/21+1/22+..+1/210)
=> A=1-1/210
Sao mà mình hỏi bài này từ lâu lắm rồi mà vẫn chưa có bạn nào trả lời nhỉ?
A) \(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}+\dfrac{1}{64}\)
2A= \(1+\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{8}+\dfrac{1}{16}+\dfrac{1}{32}\)
2A-A = \(1-\dfrac{1}{32}\)
A= \(\dfrac{31}{32}\)
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
b) 1/3+1/3^2+1/3^3+1/3^4+1/3^5 (goi tong bang M)
3M=1+1/3+1/3^2+1/3^3+1/3^4
3M-M=1-1/3^5
2M=242/243
M=242/243*1/2=121/243
Bài 1 :
A = 1 - 1/2 + 1/2 - 1/4 + 1/4 - 1/8 + 1/8 - 1/16 + ... + 1/32 - 1/64
A = 1 - 1/64
A = 63/64
Đặt tổng : \(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}=A\)
Ta tính : A x 2 - A = ( \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}\)) - (\(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}+\frac{1}{128}+\frac{1}{256}+\frac{1}{512}\) )
=\(1-\frac{1}{512}=\frac{511}{512}\)
Mà A x 2 - A = A Vậy A=\(\frac{511}{512}\)