K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2019

a) \(A=\frac{2+2^2+...+2^{2017}}{1-2^{2017}}\)

Đặt \(B=2+2^2+...+2^{2017}\)

\(\Rightarrow2B=2^2+2^3+...+2^{2018}\)

\(\Rightarrow2B-B=\left(2^2+2^3+...+2^{2018}\right)-\left(2+...+2^{2017}\right)\)

\(\Rightarrow B=2^{2018}-2\)

\(\Rightarrow A=\frac{2^{2018}-2}{1-2^{2017}}\)

\(\Rightarrow A=\frac{-2.\left(1-2^{2017}\right)}{1-2^{2017}}\)

\(\Rightarrow A=-2\)

18 tháng 8 2019

b)Đề phải là CM: \(A< \frac{2017}{2016^2}\)

 \(A=\frac{1}{2017}+\frac{2}{2017^2}+...+\frac{22017}{2017^{2017}}+\frac{2018}{2017^{2018}}\)

\(\Rightarrow2017A=1+\frac{2}{2017}+...+\frac{22017}{2017^{2016}}+\frac{2018}{2017^{2017}}\)

\(\Rightarrow2017A-A=\left(1+...+\frac{2018}{2017^{2017}}\right)-\left(\frac{1}{2017}+...+\frac{2017}{2017^{2017}}+\frac{2018}{2017^{2018}}\right)\)

\(\Rightarrow2016A=1+\frac{1}{2017}+\frac{1}{2017^2}+...+\frac{1}{2017^{2017}}-\frac{2018}{2017^{2018}}\)

Đặt \(\Rightarrow S=1+\frac{1}{2017}+\frac{1}{2017^2}+...+\frac{1}{2017^{2017}}\)

\(\Rightarrow2017S=2017+1+\frac{1}{2017}+...+\frac{1}{2017^{2016}}\)

\(\Rightarrow2017S-S=\left(2017+1+...+\frac{1}{2017^{2016}}\right)-\left(1+...+\frac{1}{2017^{2017}}\right)\)

\(\Rightarrow2016S=2017-\frac{1}{2017^{2017}}< 2017\)

\(\Rightarrow2016S< 2017\)

\(\Rightarrow S< \frac{2017}{2016}\)

\(\Rightarrow2016A< \frac{2017}{2016}\)

\(\Rightarrow A< \frac{2017}{2016^2}\left(đpcm\right)\)

23 tháng 4 2017

Ta có: \(\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}\)

\(=1+\left(\frac{2016}{2}+1\right)+\left(\frac{2015}{3}+1\right)+...+\left(\frac{1}{2017}+1\right)\)

\(=\frac{2018}{2}+\frac{2018}{3}+...+\frac{2018}{2018}\)

\(=2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)\)

Giờ ta thế vào bài toán ban đầu được

\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2018}}{\frac{2017}{1}+\frac{2016}{2}+...+\frac{1}{2017}}\)

\(=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}{2018\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)}\)

\(=\frac{2017}{2018}\)  

5 tháng 4 2017

C\(\frac{1}{1}-\frac{1}{2.3}+\frac{1}{3.4}-\frac{1}{4.5}+\frac{1}{5.6}\)-\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)-\(\frac{1}{8.9}+\frac{1}{9.10}\)

c=\(\frac{1}{1}-\frac{1}{10}\)

c=\(\frac{9}{10}\)

còn a và b rễ lắm mình ko thích làm bài rễ đâu bạn cố chờ lời giải khác nhé!

14 tháng 4 2019

1. \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)>1

2. A>B

17 tháng 4 2017

Mình giúp bạn nha!

A = 2017/1 + 2017/2 + 2017/3 + . . . + 2017/2018   /   2017/1 + 2016/2 + 2015/3 + . . .+ 1/2017

    = 2017 . ( 1 + 1/2 + 1/3 + . . . +1/2018 )   /   ( 2017 . 2016 . 2015 . . . 1) . ( 1 + 1/2 + 1/3 +. . . + 1/2017 )

    = 1/2016 . 2015 . 2014. . . 1

k mình nha

17 tháng 4 2017

Dễ mà, bạn hãy suy nghĩ đi

5 tháng 5 2018

=.....nha các bn. k mình nha

5 tháng 5 2018

Ta có : \(B=\frac{2015+2016+2017}{2016+2017+2018}\) \(=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Mà \(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

       \(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

        \(\frac{2017}{2018}>\frac{2017}{2016+2017+2016}\)

Cộng vế theo vế, ta có : 

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

4 tháng 5 2018

\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)

\(B=\frac{2015+2016+2017}{2016+2017+2018}\)

\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

Ta có:

\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)

\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)

\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)

Cộng vế theo vế, ta có:

\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)

\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)

\(\Rightarrow A>B\)

Vậy A >  B

28 tháng 5 2021
Bạn có nhầm không, tớ thấy cả hai đều giống nhau mà, Hai cái bằng nhau
2 tháng 7 2017

Vì phân số A\(=\frac{2016^{2017}+1}{2017^{2018}+1}< 1\) mà B\(=\frac{2017^{2018}+1}{2017^{2017}+1}>1\)

\(\Rightarrow\frac{2016^{2017}+1}{2017^{2018}+1}< 1< \frac{2017^{2018}+1}{2017^{2017}+1}\)

Vậy A<B

2 tháng 7 2017

a<1<b

=>A<b

Biểu thức M lớn hơn biểu thức N