Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+.......+\frac{1}{8.9.10}\)
\(=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+......+\frac{2}{8.9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+.......+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right)=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)
\(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+...+\frac{1}{6561}\)
\(\Rightarrow A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=3.\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\) \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)
\(\Rightarrow2A=1-\frac{1}{3^8}\) \(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
k cho mik đi mn!Nguyễn Như Quỳnh!
\(\frac{1}{1\times2}\) + \(\frac{1}{1\times3}\) + \(\frac{1}{1\times4}\) + \(\frac{1}{1\times5}\) + \(\frac{12}{10}\)
= \(\frac{1}{2}\) + \(\frac{1}{3}\) + \(\frac{1}{4}\) + \(\frac{1}{5}\) + \(\frac{12}{10}\)
= \(\frac{149}{60}\)
A = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+...+\frac{1}{192}+\frac{1}{384}\)
A x 2 =(1/2+1/6+1/12+1/24+…+1/192+1/384) x 2
A x 2 = 1 + 2/6 + 2/12 + 2/24 + ... + 2/192 + 2/384
Rút gọn ta được:
A x 2 = 1 + 1/3 + 1/6 + 1/12 + ... + 1/96 + 1/192
A x 2 - A = 1 + 1/3 + 1/6 + 1/12 + ... + 1/96 + 1/192 - (1/2+1/6+1/12+1/24+…+1/192+1/384)
A = 1 + 1/3 - 1/2 - 1/384
A = 5/6 - 1/384
A = 319/384
ĐS: 319/384 .
\(\frac{2}{3}.\frac{4}{7}=\frac{8}{21}\)
\(\frac{3}{11}.2=\frac{6}{11}\)
\(4.\frac{2}{7}=\frac{8}{7}\)
\(\frac{8}{21}:\frac{2}{3}=\frac{8}{21}.\frac{3}{2}=\frac{21}{2.21}=\frac{1}{2}\)
\(\frac{3}{7}.\frac{7}{3}=\frac{21}{21}=1\)
\(\frac{3}{7}:\frac{3}{7}=\frac{3}{7}.\frac{7}{3}=\frac{21}{21}=1\)
lỡ tay bấm gửi trả lời luôn
\(\frac{2}{3}.\frac{1}{6}.\frac{9}{11}=\frac{2.9}{18.11}=\frac{2.9}{2.9.11}=\frac{1}{11}\)
\(\frac{2.3.4}{2.3.4.5}=\frac{6.4}{6.4.5}=\frac{24}{24.5}=\frac{1}{5}\)
Bài 1 :
\(a)\) Ta có :
\(3x=4y=6z\)
\(\Leftrightarrow\)\(\frac{3x}{12}=\frac{4y}{12}=\frac{6z}{12}\)
\(\Leftrightarrow\)\(\frac{x}{4}=\frac{y}{3}=\frac{z}{2}\)
\(\Leftrightarrow\)\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{8}=\frac{y}{3}=\frac{5z}{10}=\frac{2x-5z}{8-10}=\frac{-36}{-2}=18\)
Do đó :
\(\frac{x}{4}=18\)\(\Rightarrow\)\(x=18.4=72\)
\(\frac{y}{3}=18\)\(\Rightarrow\)\(y=18.3=54\)
\(\frac{z}{2}=18\)\(\Rightarrow\)\(z=18.2=36\)
Vậy \(x=72\)\(;\)\(y=54\) và \(z=36\)
Chúc bạn học tốt ~
2) Ta có: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2.\left(a+b+c\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{b+c}=\frac{1}{2}\Rightarrow2a=b+c\)
\(\frac{b}{c+a}=\frac{1}{2}\Rightarrow2b=c+a\)
\(\frac{c}{a+b}=\frac{1}{2}\Rightarrow2c=a+b\)
Ta có: \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{b+a}{b}.\frac{c+b}{c}.\frac{a+c}{a}=\frac{2c.2a.2b}{b.c.a}=8\)
Vậy \(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=8\)
a, \(\frac{2}{3}+\frac{2}{3}+\frac{6}{3}=\frac{10}{3}\)
b,\(\frac{3}{4}+\frac{3}{4}+\frac{3}{2}=\frac{6}{4}+\frac{3}{2}=\frac{3}{2}+\frac{3}{2}=\frac{6}{2}=3\)
\(\left(2.8x-32\right):\frac{2}{3}=90\)
\(2.8\cdot x-32=90\cdot\frac{2}{3}\)
\(\frac{14}{5}x-32=60\)
\(\frac{14}{5}x=60+32\)
\(\frac{14}{5}x=92\)
\(x=\frac{230}{7}\)
B , c , d tương tự
\(A=\frac{370}{741}\)
A=\(\frac{370}{741}\)