Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^a+b^4=\left(a+b\right)^4-2a^2b^2=10^4-2\times4^2=1000-32=968\)\(968\)
\(a^5+b^5=\left(a+b\right)\left(a^4-a^3b+a^2b^2-ab^3+b^4\right)\)
\(=10\left[a^4+b^4-ab\left(a^2+b^2\right)+a^2b^2\right]\)
\(=10\left[968-4\times92+16\right]\)\(=6160\)
1)
a) \(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+2\left(ab^2c+a^2bc+abc^2\right)\)\(=a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2\)(vì a+b+c=0)
b) \(a+b+c=0\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ca\right)\)\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left[a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)\right]\)
\(\Rightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\left(a^2b^2+b^2c^2+c^2a^2\right)\)
\(\Rightarrow a^4+b^4+c^4=2\left(a^2b^2+b^2c^2+c^2a^2\right)=2\left(ab+bc+ca\right)^2\left(theoa\right)\)
a: \(x^2-x-6=\left(x-3\right)\left(x+2\right)\)
b: \(2x^2+3x-5=2x^2+5x-2x-5=\left(2x+5\right)\left(x-1\right)\)
Để các biểu thức trên tồn tại thì:
a/ \(4-x^2\ge0\Rightarrow\left(2-x\right)\left(2+x\right)\ge0\Rightarrow\hept{\begin{cases}x\ge-2\\x\le2\end{cases}\Rightarrow-2\le x\le2}\)
b/ \(x^2-9\ge0\Rightarrow\left(x-3\right)\left(x+3\right)\ge0\Rightarrow\orbr{\begin{cases}x\le-3\\x\ge3\end{cases}}\)
c/ \(\hept{\begin{cases}x-5\ge0\\7-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge5\\x\le7\end{cases}\Rightarrow}5\le x\le7}\)
a/ \(2\left(x^2-3x+2\right)=3\sqrt{x^3+8}\)
\(\Rightarrow2x^2-6x+4=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
\(\Rightarrow\left(-2\right)\left(x+2\right)+2\left(x^2-2x+4\right)=3\sqrt{\left(x+2\right)\left(x^2-2x+4\right)}\)
Chia 2 vế cho x2 - 2x + 4 ta được:
\(\left(-2\right).\frac{x+2}{x^2-2x+4}+2=3\sqrt{\frac{x+2}{x^2-2x+4}}\)
Đặt \(a=\sqrt{\frac{x+2}{x^2-2x+4}}\left(a\ge0\right)\) ta được:
\(-2a^2-3a+2=0\Rightarrow\left(1-2a\right)\left(a+2\right)=0\Rightarrow\orbr{\begin{cases}a=\frac{1}{2}\left(n\right)\\a=-2\left(l\right)\end{cases}}\)
\(a=\frac{1}{2}\Leftrightarrow\sqrt{\frac{x+2}{x^2-2x+4}}=\frac{1}{2}\Rightarrow\frac{x+2}{x^2-2x+4}=\frac{1}{4}\)
\(\Rightarrow x^2-6x-4=0\Rightarrow\orbr{\begin{cases}x=3+\sqrt{13}\\x=3-\sqrt{13}\end{cases}}\) (cái này tính denta là ra kết quả thôi)
Vậy có 2 nghiệm trên
câu b, c tương tự thôi
câu a:
\(=x^2+6x-x+6\)
\(=\left(x^2-x\right)-\left(6x-6\right)\)
\(=x\left(x-1\right)-6\left(x-1\right)\)
\(=\left(x-6\right)\left(x-1\right)\)
câu b:
\(=x^2+5x-x-5\)
\(=x^2-x+5x-5\)
\(=x\left(x-1\right)+5\left(x-1\right)\)
\(=\left(x+5\right)\left(x-1\right)\)
a, x2 + 5x +6
= x2 - 6x-x +6
= x(x-6)-(x-6)
=( x-1)(x-6)
b, x2+4x-5
= x2+ 5x -x -5
= x(x+5)-(x+5)
=(x-1)(x+5)
\(a^4+b^4=\left(a+b\right)^4\)
\(a^5+b^5=\left(a+b\right)^5\)
Chắc vậy !!!
sai rồi bn ơi ko có công thức nào như vậy cả