K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 3 2017

Ta có:

\(A=\frac{1}{\left(x+y\right)^3}\left(\frac{1}{x^4}-\frac{1}{y^4}\right)=\frac{1}{\left(x+y\right)^3}.\frac{\left(y^2+x^2\right)\left(x+y\right)\left(y-x\right)}{x^4y^4}=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}\)

\(B=\frac{1}{\left(x+y\right)^4}.\left(\frac{1}{x^3}-\frac{1}{y^3}\right)=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x+y\right)^4x^3y^3}\)

\(C=\frac{1}{\left(x+y\right)^5}\left(\frac{1}{x^2}-\frac{1}{y^2}\right)=\frac{y-x}{\left(x+y\right)^4x^2y^2}\)

\(\Rightarrow A+B+C=\frac{\left(x^2+y^2\right)\left(y-x\right)}{\left(x+y\right)^2x^4y^4}+\frac{\left(y-x\right)\left(x^2+xy+y^2\right)}{\left(x+y\right)^4x^3y^3}+\frac{\left(y-x\right)}{\left(x+y\right)^4x^2y^2}\)

\(=\frac{y^3-x^3}{x^4y^4\left(x+y\right)^2}\)

b/ Thế vô rồi tính nhé

23 tháng 3 2017

Đoạn gần cuối thay y-x= 1 luôn 

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2x^4y^4}+\left(\frac{\left(x+y\right)^2}{\left(x+y\right)^4\left(xy\right)^3}\right)\\ \)

\(A+B+C=\frac{x^2+y^2}{\left(x+y\right)^2\left(xy\right)^4}+\frac{1}{\left(x+y\right)^2\left(xy\right)^3}\)

\(A+B+C=\frac{x^2+y^2+xy}{\left[\left(x+y\right)xy\right]^2\left(xy\right)^2}\)  giờ mới thay không biết đã tối giản chưa

19 tháng 10 2016

B=\(\left(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\right):\frac{2016}{2017}\)

\(=\left(\frac{\frac{2}{5}-\frac{2}{9}+\frac{2}{11}}{\frac{7}{5}-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{6}-\frac{7}{8}+\frac{7}{10}}\right):\frac{2016}{2017}\)

\(=\left(\frac{2\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}{7\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{11}\right)}-\frac{\frac{1}{3}-\frac{1}{4}+\frac{1}{5}}{\frac{7}{2}\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{5}\right)}\right):\frac{2016}{2017}\)

\(=\left(\frac{2}{7}-\frac{1}{\frac{7}{2}}\right):\frac{2016}{2017}=\left(\frac{2}{7}-\frac{2}{7}\right):\frac{2016}{2017}=0\)

19 tháng 10 2016

Đợi mk tý mk sẽ giải ngay
 

5 tháng 4 2020

a, Làm

\(\frac{x+1}{2020}+\frac{x+2}{2019}+\frac{x+3}{2018}=\frac{x+4}{2017}+\frac{x+5}{2016}+\frac{x+6}{2015}\)

<=>\(\frac{x+2021}{2020}+\frac{x+2021}{2019}+\frac{x+2021}{2018}=\frac{x+2021}{2017}+\frac{x+2021}{2016}+\frac{x+2021}{2015}\)

<=>\(\left(x+2021\right)\left(\frac{1}{2020}+\frac{1}{2019}+\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)

<=> x+2021=0

<=> x=-2021

Kl:......................

b, Làmmmmm

\(\frac{2-x}{2004}-1=\frac{1-x}{2005}-\frac{x}{2006}\)

<=> \(\frac{2006-x}{2004}=\frac{2006-x}{2005}+\frac{2006-x}{2006}\)

<=> \(\left(2006-x\right)\left(\frac{1}{2004}-\frac{1}{2005}-\frac{1}{2006}\right)=0< =>2006-x=0\)

<=> x=2006

Kl:..............

19 tháng 4 2020

Hình như đề sai dấu, mình sửa lại rồi!

\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+...+\frac{x-2017}{1}=2017\)

\(\Leftrightarrow\) \(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+...+\frac{x-2017}{1}-1=0\)

\(\Leftrightarrow\) \(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+...+\frac{x-2018}{1}=0\)

\(\Leftrightarrow\) (x - 2018)\(\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)

\(\Leftrightarrow\) x - 2018 = 0

\(\Leftrightarrow\) x = 2018

Vậy S = {2018}

Chúc bn học tốt!!

19 tháng 4 2020

Hình như đề sai dấu, mình sửa lại rồi!

\(\frac{x-1}{2017}+\frac{x-2}{2016}+\frac{x-3}{2015}+...+\frac{x-2017}{1}=2017\)

\(\Leftrightarrow\) \(\frac{x-1}{2017}-1+\frac{x-2}{2016}-1+\frac{x-3}{2015}-1+...+\frac{x-2017}{1}-1=0\)

\(\Leftrightarrow\) \(\frac{x-2018}{2017}+\frac{x-2018}{2016}+\frac{x-2018}{2015}+...+\frac{x-2018}{1}=0\)

\(\Leftrightarrow\) (x - 2018)\(\left(\frac{1}{2017}+\frac{1}{2016}+\frac{1}{2015}+...+1\right)=0\)

\(\Leftrightarrow\) x - 2018 = 0

\(\Leftrightarrow\) x = 2018

Vậy S = {2018}

Chúc bn học tốt!!

20 tháng 3 2020

1. 

Ta có: \(\frac{2a+3b+3c+1}{2015+a}+\frac{3a+2b+3c}{2016+b}+\frac{3a+3b+2ac-1}{2017+c}\)

\(=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

Đặt \(\hept{\begin{cases}2015+a=x\\2016+b=y\\2017+c=z\end{cases}}\)

\(P=\frac{b+c+4033}{2015+a}+\frac{c+a+4032}{2016+b}+\frac{a+b+4031}{2017+c}\)

\(=\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}=\frac{y}{x}+\frac{z}{x}+\frac{z}{y}+\frac{x}{y}+\frac{x}{z}+\frac{y}{z}\)

\(\ge2\sqrt{\frac{y}{x}\cdot\frac{x}{y}}+2\sqrt{\frac{z}{x}\cdot\frac{x}{z}}+2\sqrt{\frac{y}{z}\cdot\frac{z}{y}}\left(Cosi\right)\)

Dấu "=" <=> x=y=z => \(\hept{\begin{cases}a=673\\b=672\\c=671\end{cases}}\)

Vậy Min P=6 khi a=673; b=672; c=671

13 tháng 1 2019

Câu 1 thử cộng 3 vào P xem 

Rồi áp dụng BDT Cauchy - Schwars : a^2/x + b^2/y + c^2/z ≥(a + b + c)^2/(x + y + z)

1 tháng 5 2019

d, 2x2-5x-3 = 0

\(\Leftrightarrow\)2x2-6x+x-3= 0

\(\Leftrightarrow\)(2x2-6x) +(x-3) = 0

\(\Leftrightarrow\)2x(x-3) + (x-3) = 0

\(\Leftrightarrow\)(x-3) (2x+1) = 0

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\frac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S =\(\left\{3;\frac{-1}{2}\right\}\)