Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow P-S=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\right)=0\)
\(\Rightarrow\left(P-S\right)^{2013}=0^{2013}=0\)
Vậy \(\left(P-S\right)^{2013}=0\)
Ta có :
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+..........+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+..........+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+......+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+......+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+.....+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+......+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+..........+\dfrac{1}{2013}\)
\(\Leftrightarrow S-P=\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}\right)\)
\(\Leftrightarrow S-P=0\)
\(\Leftrightarrow\left(S-P\right)^{2013}=0^{2013}=0\)
\(1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-2\times\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2010}+\dfrac{1}{2012}\right)\)
\(\Rightarrow1+\dfrac{1}{2}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1005}+\dfrac{1}{1006}\right)\)
\(\Rightarrow\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(\Rightarrow S=P\Rightarrow S-P=0\Rightarrow\left(S-P\right)^{2013}=1\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(=\left(1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{5}+...+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+....+\dfrac{1}{2012}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+....+\dfrac{1}{2013}=P\)
Vậy \(S=P\)
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\\ =\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\\ \Rightarrow S-P=0\\ \Rightarrow\left(S-P\right)^{2018}=0\)
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2012+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\left(\frac{2012}{2}+1\right)+\left(\frac{2011}{3}+1\right)+...+\left(\frac{1}{2013}+1\right)}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{\frac{2014}{2}+\frac{2014}{3}+...+\frac{2014}{2013}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}{2014\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)}\)
\(=\frac{1}{2014}\)
Vậy \(A=\frac{1}{2014}\)
Đặt B=\(2012+\dfrac{2012}{2}+\dfrac{2011}{3}+...+\dfrac{1}{2013}\)
=>B=\(\left(1+\dfrac{2012}{2}\right)+\left(1+\dfrac{2011}{3}\right)+...+\left(1+\dfrac{1}{2013}\right)\)
=\(\dfrac{2014}{2}+\dfrac{2014}{3}+...+\dfrac{2014}{2013}\)
=\(2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)\)
=>A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2013}}{2014\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2013}\right)}=\dfrac{1}{2014}\)
Vậy ...
Ta có:
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Mà \(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=P\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)
Vậy \(\left(S-P\right)^{2016}=0\)
Ta có :
x-y-z=0 => y+z=x (*(
Thay (*) và đa thức M ta có :
M=\(xyz-xy^2-xz^2=\left(y+z\right)yz-\left(y+z\right)y^2-\left(y+z\right)z^2\)
=\(y^2z+yz^2-y^3-zy^2-z^2y-z^3\)
=\(\left(y^2z-y^2z\right)-\left(z^2y-z^2y\right)-\left(y^3+z^3\right)\)
=\(-\left(y^3+z^3\right)\)
Mà \(-\left(y^3+z^3\right)\) là số đối của \(\left(y^3+z^3\right)\) nên M và N là 2 đa thức đối nhau.
Câu 1 :
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2011}+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+.......+\dfrac{1}{2012}\right)\)=\(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{1006}\right)\)
\(=\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2013}\)=P
Vậy S=P
Ta có:
*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0\)
B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S
( A-B)2013 =0
Chúc ban học tốt nhé...!