K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2018

a) Thay phân thức P vào biểu thức A rồi rút gọn chúng ta thu được A = u + v  với điều kiện các biểu thức có nghĩa.

b) Tương tự a) ta có B = 1.

21 tháng 4 2017

Lời giải:

Giải bài 59 trang 62 Toán 8 Tập 1 | Giải bài tập Toán 8

11 tháng 9 2017

Bài 1:

a, Ta có:

\(\dfrac{x.\dfrac{xy}{x-y}}{x+\dfrac{xy}{x-y}}-\dfrac{y.\dfrac{xy}{x-y}}{y-\dfrac{xy}{x-y}}\)

\(=\dfrac{\dfrac{x^2y}{x-y}}{x+\dfrac{xy}{x-y}}-\dfrac{\dfrac{xy^2}{x-y}}{y-\dfrac{xy}{x-y}}\)

\(=\dfrac{\left(\dfrac{x^2y}{x-y}\right)\left(y-\dfrac{xy}{x-y}\right)-\left(\dfrac{xy^2}{x-y}\right)\left(x+\dfrac{xy}{x-y}\right)}{\left(x+\dfrac{xy}{x-y}\right)\left(y-\dfrac{xy}{x-y}\right)}\)

\(=\dfrac{\dfrac{x^2y^2}{x-y}-\dfrac{x^3y^2}{\left(x-y\right)^2}-\dfrac{x^2y^2}{x-y}-\dfrac{x^2y^3}{\left(x-y\right)^2}}{xy-\dfrac{x^2y}{x-y}+\dfrac{xy^2}{x-y}-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)

\(=\dfrac{-\left(\dfrac{x^3y^2+x^2y^3}{\left(x-y\right)^2}\right)}{xy-\left(\dfrac{x^2y-xy^2}{x-y}\right)-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)

\(=-\dfrac{\dfrac{x^2y^2\left(x+y\right)}{\left(x-y\right)^2}}{xy-\left(\dfrac{xy\left(x-y\right)}{\left(x-y\right)}\right)-\dfrac{x^2y^2}{\left(x-y\right)^2}}\)

\(=\dfrac{\dfrac{x^2y^2\left(x+y\right)}{\left(x-y\right)^2}}{\dfrac{x^2y^2}{\left(x-y\right)^2}}=x+y\)

Chúc bạn học tốt!! Làm một câu mà toát cả mồ hôi!

11 tháng 9 2017

ài 1 chia rthay vào rút gọn tự làm đê

28 tháng 12 2020

a, Ta có : \(A=\frac{1}{x+2}-\frac{2x}{4-x^2}+\frac{3}{x-2}\)

\(=\frac{1}{x+2}-\frac{2x}{\left(2-x\right)\left(x+2\right)}+\frac{3}{x-2}\)

\(=\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{2x}{\left(x-2\right)\left(x+2\right)}+\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x-2+2x+3x+6}{\left(x-2\right)\left(x+2\right)}=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}\)

Suy ra : \(M=\frac{6x+4}{\left(x-2\right)\left(x+2\right)}.\frac{x+2}{3x+2}\)

\(=\frac{2\left(3x+2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)\left(3x+2\right)}=\frac{2}{x-2}\)

20 tháng 2 2018

Để \(Q\) nhỏ nhất =>  \(m;n\) nhỏ nhất

=>\(m^2+n^2\) nhỏ nhất

Mà \(m^2;n^2\ge0\) 

Suy ra để \(Q\) nhỏ nhất thì 

20 tháng 2 2018

\(m=n=0\) thay \(m=0;n=0\) vào \(Q\) đc kq

24 tháng 11 2018

a) \(A=\dfrac{mn^2+n^2\left(n^2-m\right)+1}{m^2n^4+2n^4+m^2+2}\)

\(A=\dfrac{mn^2+n^4-mn^2+1}{n^4\left(m^2+2\right)+m^2+2}=\dfrac{n^4+1}{\left(m^2+2\right)\left(n^4+1\right)}=\dfrac{1}{m^2+2}\)

b) CM \(\dfrac{1}{m^2+2}>0\)

ta có \(\left\{{}\begin{matrix}m^2+2>0\\1>0\end{matrix}\right.\forall m\in R\)

\(\Rightarrow\dfrac{1}{m^2+2}>0\forall m\in R\)

vậy đpcm

c) \(A=\dfrac{1}{m^2+2}=\dfrac{2}{2m^2+4}=\dfrac{m^2+2-m^2}{2m^2+4}=\dfrac{1}{2}-\dfrac{m^2}{2m^2+4}\le\dfrac{1}{2}\forall m\in R\)

dấu '=' xảy ra khi m=0

vậy \(A_{max}=\dfrac{1}{2}\) khi m=0

25 tháng 11 2022

a: Khi x=1 thì \(A=\dfrac{1+1}{2}=1\)

b: Để A=2 thì x+1=4

=>x=3

c: \(B=\dfrac{2+x-2+x}{x\left(x-2\right)}=\dfrac{2x}{x\left(x-2\right)}=\dfrac{2}{x-2}\)

d: C=A*B=2/(x-2)*x+1/2=x+1/x-2

Để C la số nguyên thì x-2+3 chia hết cho x-2

=>\(x-2\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{3;5;-1;1\right\}\)

17 tháng 6 2021

a, \(I=s\left(s^2-t\right)+\left(t^2+s\right)=s^3-st+t^2+s\)

Thay t = -1 và s = 1 vào biểu thức trên ta được :

\(1+1+1+1=4\)

b, \(N=u^2\left(u-v\right)-v\left(v^2-u^2\right)=u^2\left(u-v\right)+v\left(u+v\right)\left(u-v\right)\)

\(=\left(u-v\right)\left(u^2+v\left(u+v\right)\right)\)

Thay \(u=0,5=\frac{1}{2};v=-\frac{1}{2}\)

\(=\left(\frac{1}{2}+\frac{1}{2}\right).\frac{1}{4}=\frac{1}{4}\)

Bài 1:

a) x2x≠2

Bài 2:

a) x0;x5x≠0;x≠5

b) x210x+25x25x=(x5)2x(x5)=x5xx2−10x+25x2−5x=(x−5)2x(x−5)=x−5x

c) Để phân thức có giá trị nguyên thì x5xx−5x phải có giá trị nguyên.

=> x=5x=−5

Bài 3:

a) (x+12x2+3x21x+32x+2)(4x245)(x+12x−2+3x2−1−x+32x+2)⋅(4x2−45)

=(x+12(x1)+3(x1)(x+1)x+32(x+1))2(2x22)5=(x+12(x−1)+3(x−1)(x+1)−x+32(x+1))⋅2(2x2−2)5

=(x+1)2+6(x1)(x+3)2(x1)(x+1)22(x21)5=(x+1)2+6−(x−1)(x+3)2(x−1)(x+1)⋅2⋅2(x2−1)5

=(x+1)2+6(x2+3xx3)(x1)(x+1)2(x1)(x+1)5=(x+1)2+6−(x2+3x−x−3)(x−1)(x+1)⋅2(x−1)(x+1)5

=[(x+1)2+6(x2+2x3)]25=[(x+1)2+6−(x2+2x−3)]⋅25

=[(x+1)2+6x22x+3]25=[(x+1)2+6−x2−2x+3]⋅25

=[(x+1)2+9x22x]25=[(x+1)2+9−x2−2x]⋅25

=2(x+1)25+18525x245x=2(x+1)25+185−25x2−45x

=2(x2+2x+1)5+18525x245x=2(x2+2x+1)5+185−25x2−45x

=2x2+4x+25+18525x245x=2x2+4x+25+185−25x2−45x

=2x2+4x+2+18525x245x=2x2+4x+2+185−25x2−45x

=2x2+4x+20525x245x=2x2+4x+205−25x2−45x

c) tự làm, đkxđ: x1;x1

19 tháng 12 2019

ê k bn với mk ik

😘 😘 😘 😘