Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ne ban minh biet cau tra loi nhung lam the nao bam ngoac vuong
S=1+32+34+...+32016
\(\Rightarrow\)32S=32+34+...+32017
\(\Rightarrow\)9S-S=(32+34+...+32017)-(1+32+34+...+32016)
\(\Rightarrow\)8S=32017-1
\(\Rightarrow\)8S+1=32017
\(\Rightarrow\)32017=3x
\(\Rightarrow\)x = 2017
c/ 2x - 1 = \(5^{98}:5^{96}\)
2x - 1 = \(5^2\) = 25
2x = 25 + 1 = 26
x = 26 : 2
x = 13
d/ 7x + 3 = \(3^5.2^3.9\)
7x + 3 = \(3^5.3^2.8=3^7.8=2187.8\)
7x + 3 = \(17496\)
7x = 17496 - 3 = 17493
x = 17493 : 7
x = 2499
e/\(2^{2x+6}=1\)
\(2^{2x+6}=2^0\)
2x + 6 = 0
2x = 0 - 6 = - 6
x = - 6 : 2
x = - 3
j/ \(2^x=8\)
\(2^x=2^3\)
x = 3
g/ \(2^x:2^3=16\)
\(2^{x-3}=2^4\)
x - 3 = 4
x = 4 + 3
x = 7
h/ \(2^x+2^{x+1}+2^{x+2}=56\)
\(2^x\left(1+2+2^2\right)\) = 56
\(2^x.7=56\)
\(2^x=56:7\)
\(2^x=8\)
\(2^x=2^3\)
x = 3
Bài a, b thiên phong giải r, mk chỉ làm những bài còn lại thôi. Chúc bạn học tốt!!!
Mình chỉ ghj đáp za thôj nên thông cảm nha
b)1953368
c)225
d)32
\(a,=4^{10}.4^{10}.4^{45}\)
\(=4^{65}\)
\(b,=5^9+3^5\)
\(=1953125+243\)
\(=1953368\)
\(c,=1+8+27+64+125\)
\(=225\)
\(d,=32^5:32^4\)
\(=32\)
Bài 1 tự làm!
Bài 2:
a, \(\left(3x-4\right)\left(x-1\right)^3=0\Rightarrow\left[{}\begin{matrix}3x-4=0\\\left(x-1\right)^3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
b, \(2^{2x-1}:4=8^3\Rightarrow2^{2x-1}:2^2=2^9\)
\(\Rightarrow2x-1-2=9\Rightarrow2x-3=9\Rightarrow2x-12\Rightarrow x=6\)
c, Đề chưa rõ
d, \(\left(x+2\right)^5=2^{10}\Rightarrow\left(x+2\right)^5=4^5\Rightarrow x+2=4\Rightarrow x=2\)
e, \(\left(3x-2^4\right).7^3=2.7^4\Rightarrow3x-2^4=2.7^4:7^3\Rightarrow3x-16=2.7=14\)
\(\Rightarrow3x=14+16=30\Rightarrow x=\dfrac{30}{3}=10\)
f, \(\left(x+1\right)^2=\left(x+1\right)^0\Rightarrow\left(x+1\right)^2=1\) (vì x0 = 1)
\(\Rightarrow x+1=1\Rightarrow x=0\)
a)\(2^3.3^x-23=7^2\\ 2^3.3^x=72\\ 3^x=9\\ \Rightarrow x=2\)
b)\(2^{x+1}.2^{2014}=2^{2015}\\ 2^{x+1}=2^1\\ \Leftrightarrow x+1=1\\ \Rightarrow x=0\)
a) \(3^{x+1}.15=135\)
\(\Rightarrow3^{x+1}=9\)
\(\Rightarrow3^{x+1}=3^2\)
\(\Rightarrow x+1=2\)
\(\Rightarrow x=1\)
Vậy \(x=1\)
b) \(x+2x+2^2x+....+2^{2016}x=2^{2017}-1\\ \Rightarrow x\left(2+2^2+...+2^{2016}\right)=2^{2017}-1\\ \Rightarrow x\left(2^{2017}-2\right)=2^{2017}-1\)
c) \(x\left(x-1\right)+\left(x-1\right)^2=0\\ \Rightarrow x\left(x-1\right)+\left(x-1\right)\left(x-1\right)=0\\ \Rightarrow\left(x-1\right)\left(x+\left(x-1\right)\right)=0\\ \Rightarrow\left(x-1\right)\left(2x-1\right)=0\\ \Rightarrow\begin{cases}x-1=0\\2x-1=0\end{cases}\)
d) \(2^2.2^5\le2^{x-5}\le2^{10}\\ \Rightarrow2^7\le2^{x-5}\le2^{10}\)