Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 :
\(\left(x-2\right)^2=x^2-4x+4\)
Câu 2:
\(2x^2\left(4x-5x^3\right)+10x^5-5x^3\)
\(=8x^3-10x^5+10x^5-5x^3\)
\(=3x^3\)
\(\left(x-2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x-2\right)\)
\(=x^3-4x^2+8x-8+x^2-6x+8\)
\(=x^3-3x^2+2x\)
Còn lại tự làm nha dài lắm
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
A) \(\left(x-3\right)^2-\left(x+2\right)^2\)
\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)
\(=-5.\left(2x-1\right)\)
B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)
\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)
\(=8x^3-y^3-8x^3-y^3\)
\(=-2y^3\)
C) \(x^2+6x+8\)
\(=x^2+6x+9-1\)
\(=\left(x+3\right)^2-1\)
\(=\left(x+3-1\right)\left(x+3+1\right)\)
\(=\left(x+2\right)\left(x+4\right)\)
bài 3 A) \(x^2-16=0\)
\(\left(x-4\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
B) \(x^4-2x^3+10x^2-20x=0\)
\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\left(x^3+10x\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Bài 1:
\(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)
Vậy \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)
\(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)
Vậy \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)
\(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)
Vậy \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)
Bài 3:
a) \(x^2+12x+39=\left(x+6\right)^2+3>0\)
b) \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)
a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)
\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)
\(=36\)
Bài 2:
a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)
b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)
\(=64x^3-16x^2-100x+125\)