K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(\left(2x+3\right)^2+\left(2x-3\right)^2-2\left(4x^2-9\right)\)

\(=4x^2+12x+9+4x^2-12x+9-8x^2+18\)

\(=36\)

Bài 2: 

a: \(\left(y^2+6x^2\right)\left(y^2-6x^2\right)=y^4-36x^4\)

b: \(\left(4x+5\right)\left(16x^2-20x+25\right)=\left(16x^2-25\right)\left(4x-5\right)\)

\(=64x^3-16x^2-100x+125\)

22 tháng 8 2017

Câu 1 :

\(\left(x-2\right)^2=x^2-4x+4\)

Câu 2:

\(2x^2\left(4x-5x^3\right)+10x^5-5x^3\)

\(=8x^3-10x^5+10x^5-5x^3\)

\(=3x^3\)

\(\left(x-2\right)\left(x^2-2x+4\right)+\left(x-4\right)\left(x-2\right)\)

\(=x^3-4x^2+8x-8+x^2-6x+8\)

\(=x^3-3x^2+2x\)

        Còn lại tự làm nha dài lắm

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

3 tháng 11 2017

A) \(\left(x-3\right)^2-\left(x+2\right)^2\)

\(=\left(x-3-x-2\right)\left(x-3+x+2\right)\)

\(=-5.\left(2x-1\right)\)

B) \(\left(4x^2+2xy+y^2\right)\left(2x-y\right)-\left(2x+y\right)\left(4x^2-2xy+y^2\right)\)

\(=\left(2x\right)^3-y^3-\left[\left(2x\right)^3+y^3\right]\)

\(=8x^3-y^3-8x^3-y^3\)

\(=-2y^3\)

C) \(x^2+6x+8\)

\(=x^2+6x+9-1\)

\(=\left(x+3\right)^2-1\)

\(=\left(x+3-1\right)\left(x+3+1\right)\)

\(=\left(x+2\right)\left(x+4\right)\)

bài 3 A) \(x^2-16=0\)

\(\left(x-4\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-4=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

vậy \(\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)

B) \(x^4-2x^3+10x^2-20x=0\)

\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)

\(\left(x^3+10x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x^3+10x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x\left(x^2+10\right)=0\\x=2\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

3 tháng 8 2021

x=0

x=2

10 tháng 7 2018

Bài 1:

           \(A=x^2-6x+13=\left(x-3\right)^2+4\ge4\)

Vậy  \(Min\)\(A=4\)\(\Leftrightarrow\)\(x=3\)

        \(B=2x^2+8x=2\left(x^2+4x+4\right)-8=2\left(x+2\right)^2-8\ge-8\)

Vậy  \(Min\)\(B=-8\)\(\Leftrightarrow\)\(x=-2\)

        \(C=4x^2+20x=\left(2x+5\right)^2-25\ge-25\)

Vậy  \(Min\)\(C=-25\)\(\Leftrightarrow\)\(x=-\frac{5}{2}\)

Bài 3:

a)   \(x^2+12x+39=\left(x+6\right)^2+3>0\) 

b)   \(4x^2+4x+3=\left(2x+1\right)^2+2>0\)