K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2023

Ta viết lại biểu thức A như sau:

\(A=-\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{11.12}\right)\)

\(A=-\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{12-11}{11.12}\right)\)

\(A=-\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{11}-\dfrac{1}{12}\right)\)

\(A=-\left(\dfrac{1}{4}-\dfrac{1}{12}\right)\)

\(A=-\dfrac{1}{6}\)

6 tháng 5 2018

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+.....+\frac{1}{132}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+.....+\frac{1}{11.12}\)

\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}\)

\(A=\frac{7}{60}\)

6 tháng 5 2018

Ta có:

A = \(\frac{1}{5.6}\)\(\frac{1}{6.7}\)+\(\frac{1}{7.8}\)+\(\frac{1}{8.9}\)+\(\frac{1}{9.10}\)+\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)

16 tháng 5 2016

Bạn xem lời giải của mình nhé:

Giải:

\(A=\frac{1}{30}+\frac{1}{42}+...+\frac{1}{132}\\ =\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\\ =\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\\ =\frac{1}{5}-\frac{1}{12}=\frac{12-5}{60}=\frac{7}{60}\)

Chúc bạn học tốt!hihi

16 tháng 5 2016

A=\(\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)
  =1/5 - 1/6+1/6 -1/7+1/7-1/8+....+1/11 - 1/12
  = 1/5 - 1/12
  =12/60 -5/60
  = 7/60

7 tháng 8 2015

1/20 + 1/30 + 1/42 + ... + 1/156

= 1/4.5 + 1/5.6 + 1/6.7 + .... + 1/12.13

= 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 + ... + 1/12 - 1/13

= 1/4 - 1/13

= 9/52

7 tháng 8 2015

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{4}-\frac{1}{13}=\frac{9}{52}\)

**** 

27 tháng 3 2015

1/4

can cach giai ko

5 tháng 5 2017

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)

\(A=\frac{1}{5}+\frac{1}{6}-\frac{1}{6}+\frac{1}{5}...+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}\)

\(A=\frac{7}{60}\)

5 tháng 5 2017

A = \(\frac{1}{5.6}+\frac{1}{6.7}+...+\)\(\frac{1}{10.11}+\frac{1}{11.12}\)

A = \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\)\(\frac{1}{11}-\frac{1}{12}\)

A = \(\frac{1}{5}-\frac{1}{12}\)

A = \(\frac{7}{60}\)

13 tháng 8 2015

\(=\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{12.13}\)

\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+..+\frac{1}{12}-\frac{1}{13}\)

\(=\frac{1}{4}-\frac{1}{13}=\frac{9}{52}\)

22 tháng 4 2016

= 9/52

9 tháng 5 2016

\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

Ta có: \(\frac{1}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\) với mọi số tự nhiên n

\(\Rightarrow A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

Vậy A=7/60
 

5 tháng 6 2015

\(A=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{11.12}\)

\(;A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{12}\)

\(;A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

5 tháng 6 2015

=1/5.6+1/6.7+1/7.8+`1/8.9+1/9.10+1/10.11+1/11.12

=1/5-1/12

=7/60