Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) 3(x + 2) = 5x + 8
<=> 3x + 6 = 5x + 8
<=> 3x + 6 - 5x - 8 = 0
<=> -2x - 2 = 0
<=> -2x = 0 + 2
<=> -2x = 2
<=> x = -1
2) 2(x - 1) = 3(3 + x) + 3
<=> 2x - 2 = 9 + x + 3
<=> 2x - 2 = 12 + x
<=> 2x - 2 - 12 - x = 0
<=> x - 14 = 0
<=> x = 0 + 14
<=> x = 14
3) 5 - (x - 6) = 4(3 - 2x)
<=> 5 - x + 6 = 12 - 8x
<=> 11 - x = 12 - 8x
<=> 11 - x - 12 + 8x = 0
<=> -1 + 7x = 0
<=> 7x = 0 + 1
<=> 7x = 1
<=> x = 1/7
a, 8/x-8 + 11/x-11 = 9/x-9 + 10/ x-10
b, x/x-3 - x/x-5 = x/x-4 - x/x-6
c, 4/x^2-3x+2 - 3/2x^2-6x+1 +1 = 0
d, 1/x-1 + 2/ x-2 + 3/x-3 = 6/x-6
e, 2/2x+1 - 3/2x-1 = 4/4x^2-1
f, 2x/x+1 + 18/x^2+2x-3 = 2x-5 /x+3
g, 1/x-1 + 2x^2 -5/x^3 -1 = 4/ x^2 +x+1
Gợi ý:
a) Đặt \(x^2+3x+1=a\)
b) \(\left(x^2+8x+7\right)\left(x+3\right)\left(x+5\right)+15\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
Đặt \(x^2+8x+11=a\)
c) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x+11=a\)
d) \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)-4=\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)-4\)
Đặt \(12x^2+11x-1=a\)
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo câu e nhé!
a.
$4(x+5)(x+6)(x+10)(x+12)=3x^2$
$4[(x+5)(x+12)][(x+6)(x+10)]=3x^2$
$4(x^2+17x+60)(x^2+16x+60)=3x^2$
Đặt $x^2+16x+60=a$ thì pt trở thành:
$4(a+x)a=3x^2$
$4a^2+4ax-3x^2=0$
$4a^2-2ax+6ax-3x^2=0$
$2a(2a-x)+3x(2a-x)=0$
$(2a-x)(2a+3x)=0$
Nếu $2a-x=0\Leftrightarrow 2(x^2+16x+60)-x=0$
$\Leftrightarrow 2x^2+31x+120=0\Rightarrow x=\frac{-15}{2}$ hoặc $x=-8$
Nếu $2a+3x=0\Leftrightarrow 2(x^2+16x+60)+3x=0$
$\Leftrightarrow 2x^2+35x+120=0\Rightarrow x=\frac{-35\pm \sqrt{265}}{4}$
b.
$(x+1)(x+2)(x+3)(x+6)=120x^2$
$[(x+1)(x+6)][(x+2)(x+3)]=120x^2$
$(x^2+7x+6)(x^2+5x+6)=120x^2$
Đặt $x^2+6=a$ thì pt trở thành:
$(a+7x)(a+5x)=120x^2$
$\Leftrightarrow a^2+12ax-85x^2=0$
$\Leftrightarrow a^2-5ax+17ax-85x^2=0$
$\Leftrightarrow a(a-5x)+17x(a-5x)=0$
$\Leftrightarrow (a-5x)(a+17x)=0$
Nếu $a-5x=0\Leftrightarrow x^2+6-5x=0$
$\Leftrightarrow (x-2)(x-3)=0\Rightarrow x=2$ hoặc $x=3$
Nếu $a+17x=0\Leftrightarrow x^2+17x+6=0$
$\Rightarrow x=\frac{-17\pm \sqrt{265}}{2}$
Vậy.........
\(x\ne\left\{3;4;5;6\right\}\)
\(\frac{3}{x-3}-\frac{5}{x-5}=\frac{4}{x-4}-\frac{6}{x-6}\)
\(\Leftrightarrow\frac{3}{x-3}+1-\frac{5}{x-5}-1=\frac{4}{x-4}+1-\frac{6}{x-6}+1\)
\(\Leftrightarrow\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Leftrightarrow x\left(\frac{1}{x-3}+\frac{1}{x-6}-\frac{1}{x-4}-\frac{1}{x-5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-3}+\frac{1}{x-6}=\frac{1}{x-4}+\frac{1}{x-5}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{2x-9}{\left(x-3\right)\left(x-6\right)}=\frac{2x-9}{\left(x-4\right)\left(x-5\right)}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-9=0\\\left(x-3\right)\left(x-6\right)=\left(x-4\right)\left(x-5\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{2}\\18=20\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\overline{x}=\frac{\frac{9}{2}+0}{2}=\frac{9}{4}\)
1/ \(A=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
Vì \(\left(n,3\right)=1\) nên \(n⋮̸3\) nên n chia 3 dư 1 hoặc dư 2
- Nếu n chia 3 dư 1 thì \(\left(n-1\right)⋮3\Rightarrow A⋮3\)
- Nếu n chia 3 dư 2 thì \(\left(n+1\right)⋮3\Rightarrow A⋮3\)
Như vậy \(A⋮3\)
Lại có n lẻ nên n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\) (1)
Mặt khác n lẻ \(\Rightarrow\left(n^2+1\right)⋮2\) (2)
Từ (1) và (2) suy ra \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\right]⋮16\)
Hay \(A⋮16\)
Ta có \(A⋮3;A⋮16\), mà (3;16) = 1 nên \(A⋮48\)
2/ \(B=n^4-1=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)
- Chứng minh \(B⋮16\) tương tự như ở câu 1
- Ta sẽ đi chứng minh \(B⋮5\)
+ Nếu n chia 5 dư 1 thì \(\left(n-1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 4 thì \(\left(n+1\right)⋮5\Rightarrow B⋮5\)
+ Nếu n chia 5 dư 2 hoặc dư 3 thì \(\left(n^2+1\right)⋮5\Rightarrow B⋮5\)
Do đó \(B⋮5\)
Kết hợp với \(B⋮16\) ở trên suy ra \(B⋮80\)
4. \(D=n^8-n^4=n^4\left(n^4-1\right)=n^3\left(n-1\right).n.\left(n+1\right)\left(n^2+1\right)\)
- Dễ thấy n-1, n, n+1 là 3 số nguyên liên tiếp nên \(D⋮3\)
- Chứng minh \(D⋮5\)
+ Nếu \(n⋮5\) thì \(D⋮5\)
+ Nếu n chia 5 dư 1;2;3;4 thì ... (tương tự câu 2)
- Chứng minh \(D⋮16\)
+ Nếu n chẵn thì \(n^4⋮16\Rightarrow D⋮16\)
+ Nếu n lẻ, cmtt câu 1
Ta có (16;3;5) = 1 nên \(D⋮\left(16.3.5\right)=240\)
3. \(C=n^6+n^4-2n^2=n^2\left(n^4+n^2-2\right)\)
\(=n^2\left(n^2-1\right)\left(n^2+2\right)=n^2\left(n-1\right)\left(n+1\right)\left(n^2+2\right)\)
- Chứng minh \(C⋮8\)
+ Nếu n chẵn thì \(n^2⋮4\) và \(\left(n^2+2\right)⋮2\) \(\Rightarrow\left[n^2\left(n+2\right)\right]⋮8\) nên \(C⋮8\)
+ Nếu n lẻ thì n-1 và n+1 là 2 số chẵn liên tiếp \(\Rightarrow\left[\left(n-1\right)\left(n+1\right)\right]⋮8\Rightarrow C⋮8\)
- Chứng minh \(C⋮9\)
+ Dễ thấy \(\left[n\left(n-1\right)\left(n+1\right)\right]⋮3\) (1)
+ Ta sẽ chứng minh \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu \(n⋮3\) thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Nếu n chia 3 dư 1 hoặc 2 thì \(\left[n\left(n^2+2\right)\right]⋮3\)
Vậy \(\left[n\left(n^2+2\right)\right]⋮3,\forall n\in Z\) (2)
Từ (1) và (2) suy ra \(\left[n\left(n-1\right)\left(n+1\right)\right].\left[n\left(n^2+2\right)\right]⋮\left(3.3\right)=9\)
Hay \(C⋮9\)
Ta có \(C⋮8\) và \(C⋮9\), mà (8;9) = 1 nên \(C⋮72\)
\(6^2.6^4−4^3(3^6−1)\)
\(=6^6-2^6\left(3^6-1\right)=6^6-6^6+2^6=2^6=64\)
Thanks