Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
a) Điều kiện $x \ge -5$. Đặt $\sqrt{x+5}=a$ thì $x=a^2-5$. Thay vào ta có $$\begin{array}{l} (a^2-5)^2-7(a^2-5)=6a-30 \\ \Leftrightarrow a^4-17a^2-6a+90=0 \Leftrightarrow (a^2+6a+10)(a-3)^2=0 \end{array}$$
Vậy $a=3 \Leftrightarrow \boxed{ x= 4}$.
\(2\left(x^2+3\right)-\left(7x+1\right)\sqrt{x^2+3}+3x^2+3x=0\)
Đặt \(\sqrt{x^2+3}=t>0\)
\(\Rightarrow2t^2-\left(7x+1\right)t+3x^2+3x=0\)
\(\Delta=\left(7x+1\right)^2-8\left(3x^2+3x\right)=25x^2-10x+1=\left(5x-1\right)^2\)
\(\Rightarrow\left[{}\begin{matrix}t=\frac{7x+1-\left(5x-1\right)}{4}=\frac{x+1}{2}\\t=\frac{7x+1+5x-1}{4}=3x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+3}=\frac{x+1}{2}\left(x\ge-1\right)\\\sqrt{x^2+3}=3x\left(x\ge0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=\frac{x^2+2x+1}{4}\\x^2+3=9x^2\end{matrix}\right.\) \(\Leftrightarrow...\)
ĐKXĐ: bla bla bla
\(3x\left(x-2\right)\sqrt{3x-1}=2\left(x^3-5x^2+7x-2\right)\)
\(\Leftrightarrow3x\left(x-2\right)\sqrt{3x-1}=2\left(x-2\right)\left(x^2-3x+1\right)\)
TH1: \(x=2\)
TH2: \(3x\sqrt{3x-1}=2\left(x^2-3x+1\right)\)
Đặt \(\sqrt{3x-1}=t\ge0\)
\(\Rightarrow3tx=2\left(x^2-t^2\right)\)
\(\Leftrightarrow2x^2-3tx-2t^2=0\)
\(\Leftrightarrow\left(2x+t\right)\left(x-2t\right)=0\)
\(\Rightarrow x=2t\)
\(\Leftrightarrow x=2\sqrt{3x-1}\)
\(\Leftrightarrow x^2=4\left(3x-1\right)\)
\(\Leftrightarrow x^2-12x+4=0\)
2,\(pt\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)
\(\Leftrightarrow12\cdot\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)
Vì \(\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)\ge0\left(\forall x>-1\right)\)
\(\Rightarrow x=3\)