K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2019

\(42-3|y-3|=4\left(2012-x\right)^4\)

  Do \(4\left(2012-x\right)^4\ge0\)\(\Rightarrow42-3|y-3|\ge0\)

                                                     \(\Leftrightarrow3|y-3|\le42\)

                                                       \(\Leftrightarrow|y-3|\le14\)

   \(\Rightarrow|y-3|\in\left\{0;1;2;...;14\right\}\)

             Có:    42 chia 4 dư 2

                      \(4\left(2012-x\right)^4⋮4\) 

\(\Rightarrow3|y-3|\)   chia 4 dư 2   \(\Rightarrow|y-3|\)chia 4 dư 2

 \(\Rightarrow|y-3|\in\left\{2;6;10;14\right\}\)

       ( Đến đây bạn tự làm được rồi nhé )

#_W

   

7 tháng 10 2019

Thanks bạn nhiều nha

29 tháng 2 2020

Ta có: \(VP\ge0\forall x\)

\(\Rightarrow42-3\left|y-3\right|\ge0\forall y\)

\(\Rightarrow3\left|y-3\right|\le42\)

\(\Rightarrow0\le\left|y-3\right|\le14\)(1)

Mà dễ thấy 42 chẵn, \(4\left(2012-x\right)^4\)chẵn nên \(3\left|y-3\right|\)chẵn

\(\Rightarrow y-3\)chẵn (2)

Từ (1) và (2) suy ra \(\left|y-3\right|\in\left\{2;4;6;8;10;12;14\right\}\)

Mà \(42-3\left|y-3\right|⋮4\)

nên \(\left|y-3\right|\in\left\{2;6;10;14\right\}\)

Thử từng trường hợp ta chỉ thấy \(\left|y-3\right|=14\)thỏa mãn hay \(y\in\left\{17;-11\right\}\)

Lúc đó \(4\left(2012-x\right)^4=0\Rightarrow x=2012\)

11 tháng 4 2020

Câu hỏi của Phạm Hải Yến - Toán lớp 7 - Học toán với OnlineMath

Em chỉ cần đổi số 2015 ----> 2012

26 tháng 12 2017

Ta có \(42=3\left|y-3\right|+4\left(2012-x\right)^4\).
Do 42 chia hết cho 3 và 3|y -3| chia hết cho 3 nên \(4\left(2012-x\right)^4\) chia hết cho 3 \(\Rightarrow\left(2012-x\right)^4⋮3\) .
Do 3 là số nguyên tố nên \(2012-x⋮3\) . Đặt \(2012-x=3k\left(k\in Z\right)\).
Ta có \(42=3\left|y-3\right|+4\left(3k\right)^4=3\left|y-3\right|+324k^4\).
Nếu k = 0 hay 2012 - x = 0 \(\Leftrightarrow x=2012\), khi đó:
\(42=3\left|y-3\right|\)\(\Leftrightarrow\left|y-3\right|=14\) \(\Leftrightarrow\left[{}\begin{matrix}y=17\\y=-11\end{matrix}\right.\).
Nếu \(k\ne0\) khi đó \(3\left|y-3\right|+324k^4\ge324>42\) (vô lý).
Vây phương trình có hai cặp nghiệm \(\left(3;17\right),\left(3;-11\right)\).

30 tháng 11 2017

Ta có :

\(\left(-x+y-3\right)^4\ge0\)

\(\left(x-2y\right)^2\ge0\)

\(\Rightarrow P=\left(-x+y-3\right)^4+\left(x-2y\right)^2+2012\ge2012\)

Dấu " = " xảy ra khi \(\left(-x+y-3\right)^4=0\)vs \(\left(x-2y\right)^2=0\)

nên : * \(-x+y-3=0\)và \(x-2y=0\)

\(\Rightarrow y-x=3\)vs \(x=2y\)

\(\Rightarrow x=y-3\)(1)   vs \(x=2y\)(2)

Từ (1) vs (2), ta có : \(y-3=2y\)

\(\Rightarrow y=3\)

\(\Rightarrow x=y-3=3-3=0\)

\(\Rightarrow Min\) \(P=2012\) khi x=0 vs y=3.

6 tháng 3 2019

tìm GTNN của P=(X-2y)^2+(y-2012)^2012

31 tháng 5 2015

b) Nhận xét: (2x - 5)2012 \(\ge\) 0 với mọi x

                  (3y + 4)2014 \(\ge\) 0 với mọi x

=>  (2x - 5)2012 +   (3y + 4)2014 \(\ge\) 0 với mọi x

Mà (2x - 5)2012 +   (3y + 4)2014 \(\le\) 0

=> (2x - 5)2012 +   (3y + 4)2014  = 0 

<=> (2x - 5)2012 =  (3y + 4)2014 = 0

<=> 2x - 5 = 0 và 3y + 4 = 0

+) 2x - 5 = 0 => x = 5/2

+) 3y + 4 = 0 => y = -4/3

Vậy.............

31 tháng 5 2015

a) Ta có : \(x\left(x-y\right)=\frac{3}{10}\Leftrightarrow\left(x-y\right)=\frac{3}{10.x}\) .

Ta lại có : \(y\left(x-y\right)=\frac{-3}{50}\Leftrightarrow\left(x-y\right)=\frac{-3}{50.y}\) .

\(\Rightarrow\left(x-y\right)=\frac{3}{10.x}=\frac{-3}{50.y}\Rightarrow3.50.y=-3.10.x\) .

\(\Rightarrow150.y=-30.x\Leftrightarrow\frac{x}{y}=\frac{150}{-30}=-5\).

\(\Rightarrow x-y=-5\) .

\(x.\left(-5\right)=\frac{3}{10}\Rightarrow x=-\frac{3}{50}\) .

\(y.\left(-5\right)=\frac{-3}{50}\Rightarrow y=\frac{3}{250}\).

b) \(Do:\) \(\left(2x-5\right)^{2012}\) là mũ chẵn \(\Rightarrow\left(2x-5\right)^{2012}\ge0\) .

Do : \(\left(3y+4\right)^{2014}\) cũng là mũ chẵn \(\Rightarrow\left(3y+4\right)^{2014}\ge0\) .

Để : \(\left(2x-5\right)^{2012}+\left(3y+4\right)^{2014}\le0\)

\(\Leftrightarrow\left(2x-5\right)=0\Leftrightarrow x=5:2=\frac{5}{2}\).

\(\Leftrightarrow3y+4=0\Leftrightarrow y=-4:3=\frac{-4}{3}\) .

4 tháng 7 2019

+) Có: \(x:y:z:t=2:3:4:5\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{t}{5}=\frac{x+y+z+t}{2+3+4+5}=\frac{-42}{14}=-3\\ \Rightarrow\left\{{}\begin{matrix}\frac{x}{2}=-3\Rightarrow x=\left(-3\right)\cdot2=-6\\\frac{y}{3}=-3\Rightarrow y=\left(-3\right)\cdot3=-9\\\frac{z}{4}=-3\Rightarrow z=\left(-3\right)\cdot4=-12\\\frac{t}{5}=-3\Rightarrow t=\left(-3\right)\cdot5=-15\end{matrix}\right.\)

Vậy \(x=-6;y=-9;z=-12;t=-15\)

+) Gọi giá trị chung của tỉ lệ thức là k, ta có:

\(\frac{x}{4}=\frac{y}{7}=k\\ \Rightarrow x=4k;y=7k\)

Lại có: \(x\cdot y=112\)

\(\Rightarrow4k\cdot7k=112\\ 28k^2=112\\ \Rightarrow k^2=4\\ \Rightarrow k=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=4k=4\cdot\left(\pm2\right)=\pm8\\y=7k=7\cdot\left(\pm2\right)=\pm14\end{matrix}\right.\)

Vậy \(x=\pm8;y=\pm14\)

+) Gọi giá trị chung của tỉ lệ thức là h, ta có:

\(\frac{x}{3}=\frac{y}{4}=h\\ \Rightarrow x=3h;y=4h\)

Lại có: \(x\cdot y=48\)

\(\Rightarrow3h\cdot4h=48\\ 12h^2=48\\ \Rightarrow h^2=4\\ \Rightarrow h=\pm2\)

\(\Rightarrow\left\{{}\begin{matrix}x=3h=3\cdot\left(\pm2\right)=\pm6\\y=4h=4\cdot\left(\pm2\right)=\pm8\end{matrix}\right.\)

Vậy \(x=\pm6;y=\pm8\)

+) Gọi giá trị chung của tỉ lệ thức là g, ta có:

\(\frac{x}{2}=\frac{y}{-3}=g\\ \Rightarrow x=2g;y=-3g\)

\(xy=-54\)

\(\Rightarrow2g\cdot\left(-3g\right)=-54\\ -6g^2=-54\\ g^2=9\\ \Rightarrow g=\pm3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2g=2\cdot\left(\pm3\right)=\pm6\\y=-3g=\left(-3\right)\cdot\left(\pm3\right)=\pm9\end{matrix}\right.\)

Vậy \(x=\pm6;y=\pm9\)

+) \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-2=0\\\left|y^2-9\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y^2=9\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=\pm3\end{matrix}\right.\)

Vậy \(x=2;y=\pm3\)

+) \(-0,16:x=-x:25\)

\(-0,16\cdot25=-x\cdot x\\ -x^2=-4\\ \Rightarrow x^2=4\\ \Rightarrow x=\pm2\)

Vậy \(x=\pm2\)