Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4+3x^3-7x^2-6x+8\)
\(=2x^4+5x^3-2x^2-8x-2x^3-5x^2+2x+8\)
\(=x\left(2x^3+5x^2-2x-8\right)-\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+5x^2-2x-8\right)\)
\(=\left(x-1\right)\left(2x^3+x^2-4x+4x^2+2x-8\right)\)
\(=\left(x-1\right)\left[x\left(2x^2+x-4\right)+2\left(2x^2+x-4\right)\right]\)
\(=\left(x-1\right)\left(x+2\right)\left(2x^2+x-4\right)\)
\(3x^4+6x^3-7x^2+8x-10\)
\(=\left(3x^4-3x^3\right)+\left(9x^3-9x^2\right)+\left(2x^2-2x\right)+\left(10x-10\right)\)
\(=\left(x-1\right)\left(3x^3+9x^2+2x+10\right)\)
Mình ko thêm bớt hạng tử nhé.
\(8x^3-3x+6x^2-1\)
\(=\left(8x^3-1\right)+\left(6x^2-3x\right)\)
\(=\left(2x-1\right)\left(4x^2+2x+1\right)+3x\left(2x-1\right)\)
\(=\left(2x-1\right)\left[\left(4x^2+2x+1\right)+3x\right]\)
\(=\left(2x-1\right)\left(4x^2+5x+1\right)\)
\(=\left(2x-1\right)\left[4x\left(x+1\right)+\left(x+1\right)\right]\)
\(=\left(2x-1\right)\left(x+1\right)\left(4x+1\right)\)
\(8x^3-3x+6x^2-1=\left(8x^3-12x^2+6x-1\right)+\left(18x^2-9x\right)\)
\(=\left(\left(2x\right)^3-3\cdot\left(2x\right)^2\cdot1+3\cdot2x\cdot1^2-1^3\right)+\left(18x^2-9x\right)\)
\(=\left(2x-1\right)^3+9x\left(2x-1\right)=\left(2x-1\right)\left(\left(2x-1\right)^2+9x\right)\)
\(=\left(2x-1\right)\left(4x^2-4x+1+9x\right)=\left(2x-1\right)\left(4x^2+5x+1\right)\)
\(x^2-y^2+6x+9=\left(x+3\right)^2-y^2=\left(x+3+y\right)\left(x+3-y\right)\)
\(x^3+3x^2-9x-27=\left(x-3\right)\left(x^2+3x+9\right)+3x\left(x-3\right)=\left(x-3\right)\left(x^2+6x+9\right)=\left(x-3\right)\left(x+3\right)^2\)
a) \(3^2\left(y-x\right)+6x^2\left(x-y\right)^2\)
\(=3\left(y-x\right)\left[3+2x^2\left(y-x\right)\right]\)
\(=3\left(y-x\right)\left(3+2x^2y-2x^3\right)\)
b) \(x^4-3x^3+3x-1\)
\(=\left(x^4+x^3\right)-\left(4x^3+4x^2\right)+\left(4x^2+4x\right)-\left(x+1\right)\)
\(=\left(x+1\right)\left(x^3-4x^2+4x-1\right)\)
\(=\left(x+1\right)\left[\left(x^3-x^2\right)-\left(3x^2-3x\right)+\left(x-1\right)\right]\)
\(=\left(x+1\right)\left(x-1\right)\left(x^2-3x+1\right)\)
Bài làm:
a) \(x^2-6x+4=\left(x^2-6x+9\right)-5=\left(x-3\right)^2-\left(\sqrt{5}\right)^2\)
\(=\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\)
b) \(x^2-4x+3=x^2-x-3x+3=\left(x-1\right)\left(x-3\right)\)
c) \(6x^2-5x+1=6x^2-3x-2x+1=\left(2x-1\right)\left(3x-1\right)\)
d) \(3x^2+13x-10=3x^2+15x-2x-10=\left(x-5\right)\left(3x-2\right)\)
a) \(x^{12}-3x^6+1\)
\(=\left(x^6\right)^2-2\cdot x^6\cdot1+1^2-x^6\)
\(=\left(x^6-1\right)^2-\left(x^3\right)^2\)
\(=\left(x^6-x^3-1\right)\left(x^6+x^3-1\right)\)
b) \(x^4+6x^3+7x^2-6x+1\)
\(=x^4+\left(6x^3-2x^2\right)+\left(9x^2-6x+1\right)\)
\(=\left(x^2\right)^2+2x^2\left(3x-1\right)+\left(3x-1\right)^2\)
\(=\left(x^2+3x-1\right)^2\)
\(3x^2-6x+3=0\Leftrightarrow x^2-2x+1=0\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)