K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2020

3x2-12+45=0

3x2=-33

x2=-1

PT vô nghiệm

Chuc bạn hok tốt !!!!

Nhớ tích cho minh

a: \(4x^2-9=0\)

=>(2x-3)(2x+3)=0

=>x=3/2 hoặc x=-3/2

b: \(5x^2+20=0\)

nên \(x^2+4=0\)(vô lý)

c: \(2x^2-2+\sqrt{3}=0\)

\(\Leftrightarrow2x^2=2-\sqrt{3}\)

\(\Leftrightarrow x^2=\dfrac{4-2\sqrt{3}}{4}\)

hay \(x\in\left\{\dfrac{\sqrt{3}-1}{2};\dfrac{-\sqrt{3}+1}{2}\right\}\)

 

NV
22 tháng 9 2020

\(x^4-4x^3-2x^2-16x-24=0\)

Giả sử đa thức được tách về dạng:

\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Nhân phá ra ta được:

\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)

Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán

\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)

Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)

Vậy \(x^4-4x^3-2x^2-16x-24=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez

Cách 2: sử dụng casio

Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)

Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="

Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái

Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1

Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6

Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="

Sau đó shift+SOLVE

Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="

Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A

Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)

Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B

Nhấn AC, rồi nhập alpha A+alpha B rồi "="

Violympic toán 9

Nó ra 4

Tiếp tục nhập \(A\times B\) rồi "="

Nó ra -6

Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)

Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)

Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)

Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)

bài toán coi như xong

22 tháng 9 2020

Ánh Dương Clap clap :) Congratulation

28 tháng 4 2020

Còn câu 5 chắc p là x^2 -16x + 64 = 0 chứ nhỉ

28 tháng 4 2020

Chúc bạn học tốt!!

11 tháng 12 2019

\(\sqrt{3}x-2\sqrt{3}\) = 0

\(\sqrt{3}x\) =\(2\sqrt{3}\)

\(x\) =\(\frac{2\sqrt{3}}{\sqrt{3}}\)

\(x\) = 2

AH
Akai Haruma
Giáo viên
4 tháng 1 2019

Lời giải:

ĐK: $x\geq 0$

Ta có: \(x^2-5x-2\sqrt{3x}+12=0\)

\(\Leftrightarrow (x^2-6x+9)+(x-2\sqrt{3x}+3)=0\)

\(\Leftrightarrow (x-3)^2+(\sqrt{x}-\sqrt{3})^2=0\)

\(\Leftrightarrow (\sqrt{x}-\sqrt{3})^2(\sqrt{x}+\sqrt{3})^2+(\sqrt{x}-\sqrt{3})^2=0\)

\(\Leftrightarrow (\sqrt{x}-\sqrt{3})^2[(\sqrt{x}+\sqrt{3})^2+1]=0\)

\((\sqrt{x}+\sqrt{3})^2+1\neq 0\Rightarrow (\sqrt{x}-\sqrt{3})^2=0\Rightarrow x=3\) (thỏa mãn)

Vậy..........