Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
i) \(\frac{25^9}{5^{16}}-5^3:5\)
\(=\frac{\left(5^2\right)^9}{5^{16}}-5^2\)
\(=\frac{5^{18}}{5^{16}}-25\)
\(=5^2-25\)
\(=25-25\)
\(=0.\)
k) \(\frac{5}{7}-\left|\frac{2}{-7}\right|\)
\(=\frac{5}{7}-\left|\frac{-2}{7}\right|\)
\(=\frac{5}{7}-\frac{2}{7}\)
\(=\frac{3}{7}.\)
l) \(\frac{3^6.3^4}{9^3}\)
\(=\frac{3^{6+4}}{\left(3^2\right)^3}\)
\(=\frac{3^{10}}{3^6}\)
\(=3^4.\)
\(=81.\)
Chúc bạn học tốt!
\(\left|x+\frac{1}{3}\right|+\frac{4}{5}=\left|-3,2+\frac{2}{5}\right|+\left(27-\frac{3}{5}\right)\left(27-\frac{3^2}{6}\right)...\left(27-\frac{3^5}{9}\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}+\left(27-\frac{3^2}{6}\right)\left(27-\frac{3^3}{7}\right)...\left(27-27\right)...\left(27-\frac{3^{2010}}{2014}\right)\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|+\frac{4}{5}=\frac{14}{5}\)
\(\Leftrightarrow\left|x+\frac{1}{3}\right|=2\)
\(\Rightarrow\hept{\begin{cases}x+\frac{1}{3}=2\\x+\frac{1}{3}=-2\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\\x=-\frac{7}{3}\end{cases}}}\)
bạn ơi, có một chỗ chưa chuẩn .bạn kiểm tra lại giú mình. chỗ vế trái bạn thiếu \(\left(27-\frac{3}{5}\right)\). bạn bổ sung vào cho đúng nhé. dù sao vẫn cảm ơn bạn.
a) \(\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{2^3}{3}=\frac{8}{3}\)
Gọi \(A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\)
\(B=1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\)
Từ đề bài ta có
\(D=182\left[\frac{A}{2A}:\frac{4B}{B}\right]:\frac{919191}{808080}\)
\(D=182\times\left(\frac{1}{2}:4\right):\frac{91}{80}\)
\(D=182\times\frac{1}{8}\times\frac{80}{91}\)
\(D=\frac{91\times2\times1\times8\times10}{8\times91}=20\)
cho tui nha
Ta có:\(D=182\left[\frac{1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}}{2+\frac{2}{3}+\frac{2}{9}+\frac{2}{27}}:\frac{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right]:\frac{919191}{808080}\)
\(D=182\left[\frac{1\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}\right)}{2\left(1+\frac{1}{3}+\frac{1}{9}+\frac{2}{27}\right)}:\frac{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}\right]:\frac{919191}{808080}\)
\(D=182\left[\frac{1}{2}:4\right]:\frac{919191}{808080}=182\left[\frac{1}{2}.\frac{1}{4}\right]:\frac{919191}{808080}=182.\frac{1}{8}:\frac{919191}{808080}=\frac{182}{8}:\frac{919191}{808080}\)Mà \(\frac{919191}{808080}=\frac{919191:10101}{808080:10101}=\frac{91}{80}\)
\(\Rightarrow D=\frac{182}{8}:\frac{91}{80}=\frac{182}{8}.\frac{80}{91}=\frac{182.80}{8.91}=\frac{91.2.8.10}{8.91}=2.10=20\)
Vậy D=20
\(3\frac{4}{27}.30,3-3\frac{4}{27}.9,3-3\frac{4}{27}.3\)
\(=3\frac{4}{27}.\left(30,3-9,3-3\right)\)
\(=3\frac{4}{27}.18\)
\(=\frac{170}{3}\)