K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2020

\(2x-x^2=0\)

\(x\left(2-x\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\2-x=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\x=2\end{cases}}\)

1 tháng 12 2020

2x-xx=0

x.(2-x)=0

TH1:2x=0

x=0

TH2:2-x=0

x=2

5 tháng 9 2018

\(a,x^2-2x=0\)

\(\Rightarrow x\left(x-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

Vậy ...

\(b,\left(5-2x\right)^2-16=0\)

\(\Rightarrow\left(5-2x\right)^2=16\)

\(\Rightarrow\left(5-2x\right)^2=4^2\)

\(\Rightarrow5-2x=\pm4\)

\(\Rightarrow\left[{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=1\\2x=9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{2}{9}\end{matrix}\right.\)

Vậy ...

\(c,x\left(x+3\right)-x^2-11=0\)

\(\Rightarrow x^2+3x-x^2-11=0\)

\(\Rightarrow3x-11=0\)

\(\Rightarrow3x=11\)

\(\Rightarrow x=\dfrac{11}{3}\)

Vậy ...

22 tháng 8 2018

a) \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x\right)^2-5^2-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow\left(-2\right).\left(2x-5\right)=0\)

\(\Leftrightarrow2x-5=0\)

\(\Leftrightarrow x=\dfrac{5}{2}\)

22 tháng 8 2018

a,\(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(4x^2-25\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(2x-5\right)^2-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(2x-5-2x-7\right)=0\)

\(\Rightarrow\left(2x-5\right)\left(-12\right)=0\)

\(\Rightarrow2x-5=0\)

\(\Rightarrow2x=5\)

\(\Rightarrow x=\dfrac{5}{2}\)

\(b,2x^3+3x^2+2x+3=0\)

\(\Rightarrow\left(2x^3+2x\right)+\left(3x^2+3\right)=0\)

\(\Rightarrow2x\left(x^2+1\right)+3\left(x^2+1\right)=0\)

\(\Rightarrow\left(2x+3\right)\left(x^2+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+3=0\\x^2+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x=-3\\x^2=-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=1\end{matrix}\right.\)

\(c,x^3+27+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x^3+27\right)+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x+3\right)^3+\left(x+3\right)\left(x-9\right)=0\)

\(\Rightarrow\left(x+3\right)\left(x^2+9+x-9\right)=0\)

\(\Rightarrow\left(x+3\right).x^3=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\x^3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=0\end{matrix}\right.\)

\(d,x^2\left(x+7\right)-4\left(x+7\right)=0\)

\(\Rightarrow\left(x^2-4\right)\left(x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2=4\\x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\)

8 tháng 2 2018

a. \(9\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow9x+18-3x-6=0\)

\(\Leftrightarrow6x+12=0\)

\(\Leftrightarrow x=-2\)

e. \(\left(2x-1\right)^2-45=0\)

\(\Leftrightarrow4x^2-2x+1-45=0\)

\(\Leftrightarrow4x^2-2x-44=0\)

Đến đó tự giải tiếp nha!

c. \(2\left(2x-5\right)-3x=0\)

\(\Leftrightarrow4x-10-3x=0\)

\(\Leftrightarrow x-10=0\)

\(\Leftrightarrow x=10\)

g. \(2x^2-6x=0\)

\(\Leftrightarrow2x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

20 tháng 2 2018

sao làm nhung cau de the

18 tháng 6 2020

a, (x-5).(x-1) >0
<=> x-5>0 và x-1>0
<=> x-5>0
<=> x>5
x-1>0
<=> x>1
Vậy x>5
b, (2x-3).(x+1) <0
<=> 2x-3<0 và x+1<0
2x-3<0 <=> 2x<3 <=> x<2/3
x+1<0 <=> x<-1
Vậy x<2/3
c, 2x2 - 3x +1>0
<=> 2x2 - 2x- x +1>0
<=>(x-1). (2x-1) >0
<=> x-1>0 và 2x-1>0
x-1>0 <=> x>1
2x-1>0 <=> 2x>1 <=> x>1/2
Vậy x>1/2

26 tháng 3 2020

b, \(\left(4x+2\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow4x+2=0\) (Vì \(x^2+1>0\forall x\))

\(\Leftrightarrow x=\frac{-1}{2}\)

Vậy phương trình có nghiệm \(x=\frac{-1}{2}.\)

c, \(\left(x^2-4\right)+\left(x-2\right)\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(5-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{2;5\right\}\).

d, \(3x^2+2x-1=0\)

\(\Leftrightarrow3x^2+3x-x-1=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm \(S=\left\{-1;\frac{1}{3}\right\}\).

26 tháng 3 2020
https://i.imgur.com/4VMWYH0.jpg
25 tháng 6 2019

a) 2x(x-3)+5(x-3)=0

\(\Leftrightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy: phương trình đã cho có tập nghiệm S=\(\left\{3;-\frac{5}{2}\right\}\)