Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{sinx+cotx}{1+tanx.sinx}=\frac{sinx.cosx\left(sinx+cotx\right)}{sinx.cosx\left(1+tanx.sinx\right)}=\frac{cosx\left(sin^2x+cosx\right)}{sinx\left(cosx+sin^2x\right)}=cotx\)
\(\Rightarrow\frac{\left(sinx+cotx\right)^{2016}}{\left(1+tanx.sinx\right)^{2016}}=cot^{2016}x\) (1)
\(\frac{sin^{2016}x+cot^{2016}x}{1+tan^{2016}x.sin^{2016}x}=\frac{sin^{2016}x.cos^{2016}x\left(sin^{2016}x+cot^{2016}x\right)}{sin^{2016}x.cos^{2016}x\left(1+tan^{2016}x.sin^{2016}x\right)}\)
\(=\frac{cos^{2016}x\left(sin^{4032}x+cos^{2016}x\right)}{sin^{2016}x\left(cos^{2016}x+sin^{4032}x\right)}=cot^{2016}x\) (2)
(1);(2) suy ra đpcm
Lời giải:
Có \(M=\left ( \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \right )-\left ( \frac{2}{4^2}+\frac{4}{4^4}+...+\frac{2016}{4^{2016}} \right )=A-B\)
Xét \(A= \frac{1}{4}+\frac{3}{4^3}+...+\frac{2015}{4^{2015}} \Rightarrow 16A=4+\frac{3}{4}+\frac{5}{4^3}+...+\frac{2015}{4^{2013}}\)
\(\Rightarrow 15A=4+2\underbrace{\left ( \frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2013}} \right )}_{T}-\frac{2015}{4^{2015}}\)
Lại có \(16T=4+\frac{1}{4}+\frac{1}{4^3}+...+\frac{1}{4^{2011}}\Rightarrow 15T=4-\frac{1}{4^{2013}}\)
Do đó \(A=\frac{1}{15}\left ( 4+\frac{8}{15}-\frac{2}{15.4^{2013}}-\frac{2015}{4^{2015}} \right )\)
Thực hiện tương tự, suy ra
\(B=\frac{1}{15}\left ( 2+\frac{2}{15}-\frac{2}{15.4^{2014}}-\frac{2016}{4^{2016}} \right )\)
\(\Rightarrow M=A-B=\frac{1}{15}\left ( \frac{12}{5}-\frac{90692}{15.4^{2014}} \right )<\frac{1}{15}.\frac{12}{5}=\frac{4}{25}\)
Ta có đpcm
\(\dfrac{5}{1.6}+\dfrac{5}{6.11}+...+\dfrac{5}{\left(5x+1\right)\left(5x+6\right)}=\dfrac{2015}{2016}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+...+\dfrac{1}{5x+1}-\dfrac{1}{5x+6}=\dfrac{2015}{2016}\)
\(\Rightarrow\dfrac{1}{1}-\dfrac{1}{5x+6}=\dfrac{2015}{2016}\)
\(\Rightarrow\dfrac{5x+5}{5x+6}=\dfrac{2015}{2016}\)
\(\Rightarrow\left(5x+5\right).2016=\left(5x+6\right).2015\)
\(\Rightarrow10080x+10080=10075+12090\)
\(\Rightarrow5x=2010\)
\(\Rightarrow x=402\)
Vậy x = 402
Ta có:
\(39^{2016}.69^{2016}-41\)
\(=\left(39^2\right)^{1008}.\left(69^2\right)^{1008}-41\)
\(=\overline{\left(...1\right)}^{1008}.\overline{\left(...1\right)}^{1008}-41\)
\(=\overline{\left(...1\right)}.\overline{\left(...1\right)}-41\)
\(=\overline{...1}-41\)
\(=\overline{...0}\)
Vì \(\overline{...0}⋮10\) nên \(39^{2016}.69^{2016}-41⋮10\)
Bài 1:
a) Để x là số âm <=>x<0
<=> \(\frac{a-4}{7}< 0\Leftrightarrow a-4< 0\Leftrightarrow a< 4\)
b) Để x là số dương <=> x>0
<=> \(\frac{a-4}{7}>0\Leftrightarrow a-4>0\Leftrightarrow a>4\)
c) x k phải là số âm k phải là số dương <=>x=0
<=> \(\frac{a-4}{7}=0\Leftrightarrow a-4=0\Leftrightarrow a=4\)
1.
\(f\left(x\right)=\frac{x-7}{\left(x-4\right)\left(4x-3\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định tại \(x=\left\{\frac{3}{4};4\right\}\)
\(f\left(x\right)=0\Rightarrow x=7\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}\frac{3}{4}< x< 4\\x>7\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}x< \frac{3}{4}\\4< x< 7\end{matrix}\right.\)
2.
\(f\left(x\right)=\frac{11x+3}{-\left(x-\frac{5}{2}\right)^2-\frac{3}{4}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=-\frac{3}{11}\)
\(f\left(x\right)>0\Rightarrow x< -\frac{3}{11}\)
\(f\left(x\right)< 0\Rightarrow x>-\frac{3}{11}\)
3.
\(f\left(x\right)=\frac{3x-2}{\left(x-1\right)\left(x^2-2x-2\right)}\)
Vậy:
\(f\left(x\right)\) ko xác định khi \(x=\left\{1;1\pm\sqrt{3}\right\}\)
\(f\left(x\right)=0\Rightarrow x=\frac{2}{3}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< 1-\sqrt{3}\\\frac{2}{3}< x< 1\\x>1+\sqrt{3}\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow\left[{}\begin{matrix}1-\sqrt{3}< x< \frac{2}{3}\\1< x< 1+\sqrt{3}\end{matrix}\right.\)
4.
\(f\left(x\right)=\frac{\left(x-2\right)\left(x+6\right)}{\sqrt{6}\left(x+\frac{\sqrt{6}}{4}\right)^2+\frac{8\sqrt{2}-3\sqrt{6}}{8}}\)
Vậy:
\(f\left(x\right)=0\Rightarrow x=\left\{-6;2\right\}\)
\(f\left(x\right)>0\Rightarrow\left[{}\begin{matrix}x< -6\\x>2\end{matrix}\right.\)
\(f\left(x\right)< 0\Rightarrow-6< x< 2\)