Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B=2^2015=2^2014.2=2^2014+2^2014
=2^2014+2^2013.2=2^2014+2^2013+2^2013
=2^2014+2^2013+...+2^3.2=2^2014+2^2013+...+2^3+2^3
=2^2014+2^2013+...+2^3+2^2.2=2^2014+2^2013+...+2^3+2^2+2^2
=2^2014+2^2013+...2^3+2^2+2.2=2^2014+2^2013+...+2^3+2^2+2+2
A=1+2+2^2+2^3+...+2^2013+2^2014
=>B> A
2.A = 2.(1+2+22+...+22014)=2+22+23+...22015
2A-A=A=(2+22+...+22015)-(1+2+22+...+22014)
=A=22015-1va B=22015
=A<B
a) 15 + 23 = 1 + 8 = 9 = 32 ( là số chính phương )
b) 52 + 122 = 25 + 144 = 169 = 132 ( là số chính phương )
c) 26 + 62 = 64 + 36 = 100 = 1002 ( là số chính phương )
d) 13 + 23 + 33 + 43 + 53 + 63
= 1 + 8 + 27 + 64 + 125 + 216
= 441 = 212 ( là số chính phương )
a) 15 + 23=1 + 8 = 9 (là số chính phương)
b) 52 + 122= 25 + 144= 169 (là số chính phương)
c) 26 + 62= 64 + 36=100 (là số chính phương)
d) 142 – 122= 196 - 144=52 (không là số chính phương)
e) 13 + 23 + 33 + 43 + 53 + 63= 1 + 8 + 27 + 64 + 125 + 216 = 411 (là số chính phương)
So sánh :
a ) 31^11 và 17^14
31^11 < 32^11= (25)11 = 2^55
=> 31^11 < 2^55
17^14>16^14=(24)14 = 2^56
=>17^14>2^56
=>31^11 < 2^55 < 2^56 < 17^14
=>31^11 < 17^14
b ) 3^500 và 7^300
3^500 = ( 35)100 = 243100
7^300 = ( 73)100 = 343100
=> 243100 < 343100
=> 3^500 < 7^300
Tìm x :
a ) 2x . 4 = 128
=> 2x = 32
=> 2x = 25
=> x = 5
b ) 2x . 22 = ( 23)2 = 64
=> 2x = 64 : 22 = 16
=> 2x = 24
=> x = 4
Bài cuối bạn tham khảo tại : Câu hỏi của Linh Phan - Toán lớp 6 - Học toán với OnlineMath
Link : https://olm.vn/hoi-dap/detail/198524999512.html
\(B+1=3^{2015}+3^{2014}+...+3^3+3^2+3+1\)
\(\Leftrightarrow2\left(B+1\right)=\left(3-1\right)\left(3^{2015}+3^{2014}+...+3^3+3^2+3+1\right)\)
\(\Leftrightarrow2B+2=3^{2016}-1\Leftrightarrow2B+3=3^{2016}\)
Vậy để \(2B+3=3^x\)thì x = 2016.
\(A=3+3^2+3^3+...+3^{2020}\)
\(3A=3^2+3^3+3^4+...+3^{2021}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2021}\right)-\left(3+3^2+3^3+...+3^{2020}\right)\)
\(2A=3^{2021}-3\)
\(A=\frac{3^{2021}-3}{2}\)
Từ đây cũng suy ra \(x=2021\).
Ta có B = 3 + 32 + 33 + ... + 32014 + 32015
=> 3B = 32 + 33 + 34 + .... + 32015 + 32016
Lấy 3B trừ B theo vế ta có
3B - B = (32 + 33 + 34 + .... + 32015 + 32016) - (3 + 32 + 33 + ... + 32014 + 32015)
2B = 32016 - 3
Khi đó 2B + 3 = 3x
<=> 32016 - 3 + 3 = 3x
=> 32016 = 3x
=> x = 2016
Vậy x = 2016
Bg
Ta có: B = 3 + 32 + 33 +...+ 32014 + 32015
=> 3B = 3.(3 + 32 + 33 +...+ 32014 + 32015)
=> 3B = 3.3 + 3.32 + 3.33 +...+ 3.32014 + 3.32015
=> 3B = 32 + 33 + 34 +...+ 32015 + 32016
=> 3B - B = (32 + 33 + 34 +...+ 32015 + 32016) - (3 + 32 + 33 +...+ 32014 + 32015)
=> 2B = 32016 - 3
2B + 3 = 3x
=> 32016 - 3 + 3 = 3x
=> 32016 = 3x
=> x = 2016