Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Góp ý : Bạn nên đặt câu hỏi bằng thanh công cụ ở trên để rõ ràng và chính xác hơn và bạn cũng nên ghi đề bài nữa nha .
( vì câu hỏi như vậy không rõ ràng nên sẽ bị xóa sau khi bạn đọc ạ )
Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html
a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)
b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)
c: \(=2\sqrt{21}\)
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+6+2\sqrt{3}\)
\(=1\)
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{2}+\sqrt{7}-\sqrt{3}\)
=0
a) Ta có: \(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{12}{3-\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\dfrac{3\left(2+\sqrt{3}\right)}{1}+\dfrac{12\left(3+\sqrt{3}\right)}{6}\)
\(=\sqrt{3}+1-6-3\sqrt{3}+2\left(3+\sqrt{3}\right)\)
\(=-2\sqrt{3}-5+6+2\sqrt{3}\)
=1
b) Ta có: \(\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\sqrt{7}+\sqrt{5}}-\dfrac{3}{\sqrt{5}-\sqrt{2}}+\dfrac{4}{\sqrt{7}+\sqrt{3}}\)
\(=\sqrt{3}+\sqrt{2}-\sqrt{7}+\sqrt{5}-\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{3}\)
\(=\sqrt{2}-\sqrt{3}\)
Phép 1:
Ta có: \(3\cdot\sqrt{7-4\sqrt{3}}\)
\(=3\cdot\sqrt{4-2\cdot2\cdot\sqrt{3}+3}\)
\(=3\cdot\sqrt{\left(2-\sqrt{3}\right)^2}\)
\(=3\cdot\left|2-\sqrt{3}\right|\)
\(=3\cdot\left(2-\sqrt{3}\right)\)(Vì \(2>\sqrt{3}\))
\(=6-3\sqrt{3}\)
Phép 2:
Ta có: \(\sqrt{11+4\sqrt{7}}\)
\(=\sqrt{7+2\cdot\sqrt{7}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{7}+2\right)^2}\)
\(=\left|\sqrt{7}+2\right|\)
\(=\sqrt{7}+2\)(Vì \(\sqrt{7}+2>0\))
Phép 3:
Ta có: \(2\cdot\sqrt{11-4\sqrt{7}}\)
\(=2\cdot\sqrt{7-2\cdot\sqrt{7}\cdot2+4}\)
\(=2\cdot\sqrt{\left(\sqrt{7}-2\right)^2}\)
\(=2\cdot\left|\sqrt{7}-2\right|\)
\(=2\cdot\left(\sqrt{7}-2\right)\)(Vì \(\sqrt{7}>2\))
\(=2\sqrt{7}-4\)
Phép 4:
Ta có: \(\sqrt{19-4\sqrt{15}}\)
\(=\sqrt{15-2\cdot\sqrt{15}\cdot2+4}\)
\(=\sqrt{\left(\sqrt{15}-2\right)^2}\)
\(=\left|\sqrt{15}-2\right|\)
\(=\sqrt{15}-2\)(Vì \(\sqrt{15}>2\))
Ta có: \(\left(2\sqrt{112}+5\sqrt{7}+2\sqrt{63}-2\sqrt{28}\right)\cdot\sqrt{7}\)
\(=\left(8\sqrt{7}+5\sqrt{7}+6\sqrt{7}-4\sqrt{7}\right)\cdot\sqrt{7}\)
\(=15\sqrt{7}\cdot\sqrt{7}\)
=105