Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{2.4}+\dfrac{2}{4.6}+...+\dfrac{2}{\left(2x-2\right)2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{4-2}{2.4}+\dfrac{6-4}{4.6}+...+\dfrac{2x-\left(2x-2\right)}{\left(2x-2\right)2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+..+\dfrac{1}{2x-2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{-1}{2x}=\dfrac{-1}{4}\)
\(\Rightarrow x=2\)
Ta có: \(\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{\left(2x-2\right).2x}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+...+\dfrac{1}{2x-2}-\dfrac{1}{2x}\right)=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{2x}\right)=\dfrac{1}{8}\Rightarrow\dfrac{1}{2}.\dfrac{x-1}{2x}=\dfrac{1}{8}\Rightarrow\dfrac{x-1}{4x}=\dfrac{1}{8}\)
\(\Rightarrow8\left(x-1\right)=4x\Rightarrow8x-8=4x\Rightarrow4x=8\Rightarrow x=2\)
A = {10 ; 12 ; 14 ; 16 ; 18}
B = {199 ; 201 ; 203 ; 205}
C = {5 ; 6 ; 7 ; 8}
D = {0}
Bài 1:
a) Chỗ y6 là 6.y hay là y6
b) \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)
\(\Rightarrow2x-2-6x-6-8x-12=16\)
\(\Rightarrow\left(2x-6x-8x\right)-\left(2+6+12\right)=16\)
\(\Rightarrow-12x-20=16\)
\(\Rightarrow-12x=36\)
\(\Rightarrow x=-3\)
Vậy x = -3
c) \(\left(x-5\right)^{x+1}-\left(x-5\right)^{x+13}=0\)
\(\Rightarrow\left(x-5\right)^{x+1}\left[1-\left(x-5\right)^{12}\right]=0\)
\(\Rightarrow\left(x-5\right)^{x+1}=0\) hoặc \(1-\left(x-5\right)^{12}=0\)
+) \(\left(x-5\right)^{x+1}=0\Rightarrow x-5=0\Rightarrow x=5\)
+) \(1-\left(x-5\right)^{12}=0\Rightarrow\left(x-5\right)^{12}=1\)
\(\Rightarrow x-5=\pm1\)
+) \(x-5=1\Rightarrow x=6\)
+) \(x-5=-1\Rightarrow x=4\)
Vậy \(x\in\left\{6;4\right\}\)
Bài 2: a, thiếu dữ liệu
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{a+b+c}=1\)
\(\left[\begin{matrix}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{a}=1\end{matrix}\right.\Rightarrow\left[\begin{matrix}a=b\\b=c\\c=a\end{matrix}\right.\Rightarrow a=b=c\)
Ta có: \(\frac{a^3b^2c^{1930}}{a^{1935}}=\frac{a^3a^2a^{1930}}{a^{1935}}=\frac{a^{1935}}{a^{1935}}=1\)
Vậy \(\frac{a^3b^2c^{1930}}{a^{1935}}=1\)
\(S=8+8^3+...+8^{2x+1}\\ \Rightarrow64S=8^3+8^5+...+8^{2x+3}\\ \Rightarrow64S-S=\left(8^3+8^5+...+8^{2x+3}\right)-\left(8+8^3+...+8^{2x+1}\right)\\ \Rightarrow63S=8^{2x+3}-8\\ \Rightarrow S=\dfrac{8^{2x+3}-8}{63}\)
a)
(2x-1)4 = 34
=>2x-1 = 3
2x = 3+1
2x = 4
x = 2
b)
(3x-1)3 = 53
=> 3x-1 = 5
3x = 5+1
3x = 6
x = 2
c)
4x-1 . 42 = 45
4x-1 = 45 : 42
4x-1 = 43
=> x-1 = 3
x= 4
d)
3.34 nhỏ hơn hoặc bằng 32x nhỏ hơn hoặc bằng 33 . 35
35 nhỏ hơn hoặc bằng 32x nhỏ hơn hoặc bằng 38
=> 2x = 5 ; 6 ;7; 8
Nếu 2x = 5 thì x = 5:2 (loại)
Nếu 2x = 6 thì x = 3 ( thỏa mãn )
Nếu 2x = 7 thì x = 7: 2 ( loại)
Nếu 2x = 8 thì x = 4 ( thỏa mãn )
=> x= 3:4
a) \(\left(2x-1\right)^4=81\)
\(\left(2x-1\right)^4=3^4\)
\(\Rightarrow2x-1=3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
vay \(x=2\)
b) \(\left(3x-1\right)^3=125\)
\(\left(3x-1\right)^3=5^3\)
\(\Rightarrow3x-1=5\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
vay \(x=2\)
c) \(4^{x-1}.16=1024\)
\(4^{x-1}=\frac{1024}{16}\)
\(4^{x-1}=64\)
\(4^{x-1}=4^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
vay \(x=4\)
d) \(3.81\le9^x\le27.243\)
\(3.3^4\le9^x\le3^3.3^5\)
\(3^5\le3^{2x}\le3^8\)
\(\Rightarrow5\le2x\le8\)
\(\Rightarrow\orbr{\begin{cases}2x\le8\\2x\ge5\end{cases}}\Rightarrow\orbr{\begin{cases}x\le4\\x\ge\frac{5}{2}\end{cases}}\Rightarrow\frac{5}{2}\le x\le8\)
vay \(\frac{5}{2}\le x\le8\)