K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2023

loading...  

25 tháng 10 2023

loading...  loading...  

24 tháng 10 2023

loading...  

24 tháng 10 2023

loading...  loading...  

12 tháng 5 2021

                           Bài làm :

a) Ta có :

\(\widehat{ACB}\text{ là góc nội tếp chắn nửa đường tròn}\)

\(\Rightarrow\widehat{ACB}=90^o\Rightarrow\widehat{ACM}=180^o-\widehat{ACB}=90^o\)

Từ đó ; ta có :

\(\widehat{ACM}+\widehat{AHM}=90+90=180^o\)

=> Tứ giác AHMC là tứ giác nội tiếp đường tròn vì có 2 góc đối diện  = 180 độ 

=> Điều phải chứng minh

b) Theo phần a : Tứ giác AHMC là tứ giác nội tiếp 

\(\Rightarrow\widehat{AMH}=\widehat{ACH}\left(1\right)\)

Xét đường tròn (O) : Góc ADC và góc ABC đều là 2 góc nội tiếp cùng chắn cung AC

\(\Rightarrow\widehat{ADC}=\widehat{ABC}\left(2\right)\)

Vì CD⊥AB ; MH⊥AB

=> CD//MH 

=>∠ADC = ∠AMH ( 2góc so le trong ) (3)

Từ (1) ; (2) ; (3) 

\(\Rightarrow\widehat{ABC}=\widehat{ACH}\)

=> Điều phải chứng minh

c)∠AOC = 45o

=>∠COB = 180 - 45 = 135o

\(\Rightarrow S_{OCB}=\frac{\pi.R^2.n}{360}=\frac{\pi.2^2.135}{360}=\frac{3}{2}\pi\left(cm^2\right)\)

a) Xét tứ giác AHMC có 

góc ACM + góc AHM = 180 độ

Vậy tứ giác AHMC nội tiếp

 

Cho (O) với dây $\mathrm{AB}$ cố định (AB không qua $\mathrm{O}$ ). Đường kính $\mathrm{CD}$ vuông góc với $\mathrm{AB}$ tại $\mathrm{H}$ (C thuộc cung lớn $\mathrm{AB}$ ). Điểm $\mathrm{M}$ di chuyển trên cung nhỏ $\mathrm{AC}(\mathrm{M} \neq \mathrm{A}$ và $\mathrm{M} \neq \mathrm{C})$. Đường thẳng $\mathrm{CM}$ cắt đường thẳng $\mathrm{AB}$ tại $\mathrm{N}$. Nối $\mathrm{MD}$ cắt $\mathrm{AB}$ tại $\mathrm{E}$. a) Chứng minh tứ giác...
Đọc tiếp

Cho (O) với dây $\mathrm{AB}$ cố định (AB không qua $\mathrm{O}$ ). Đường kính $\mathrm{CD}$ vuông góc với $\mathrm{AB}$ tại $\mathrm{H}$ (C thuộc cung lớn $\mathrm{AB}$ ). Điểm $\mathrm{M}$ di chuyển trên cung nhỏ $\mathrm{AC}(\mathrm{M} \neq \mathrm{A}$ và $\mathrm{M} \neq \mathrm{C})$. Đường thẳng $\mathrm{CM}$ cắt đường thẳng $\mathrm{AB}$ tại $\mathrm{N}$. Nối $\mathrm{MD}$ cắt $\mathrm{AB}$ tại $\mathrm{E}$.
a) Chứng minh tứ giác CMEH nội tiếp.
b) Chứng minh $\mathrm{NM} \cdot \mathrm{NC}=$ NA.NB.
c) Lấy điểm $\mathrm{P}$ đối xứng với $\mathrm{A}$ qua $\mathrm{O}$. Gọi I là trung điểm của $\mathrm{MC}$. Kẻ $\mathrm{IK}$ vuông góc với đường thẳng $\mathrm{AM}$ tại $\mathrm{K}$. Chứng minh $\mathrm{IK} / / \mathrm{MP}$ và điểm $\mathrm{K}$ thuộc một đường tròn cố định.

11
13 tháng 5 2021

a. Xét (O) , có:
CD \(\perp\)AB = {H}
=> \(\widehat{CHA}=90^o\Rightarrow\widehat{CHE}=90^o\)

Có: \(\widehat{CMD}\)là góc nội tiếp chắn nửa đường tròn đường kính CD
=> \(\widehat{CMD}=90^o\Rightarrow\widehat{CME}=90^o\)

Xét tứ giác CMEH, có:
\(\widehat{CME}+\widehat{CHE}=90^o+90^o=180^o\)

2 góc \(\widehat{CME}\)và \(\widehat{CHE}\)là 2 góc đối nhau
=> CMEH là tứ giác nội tiếp (đpcm)

15 tháng 5 2021

Câu a: Có góc CHE=90 độ (vì CD\(\perp AB\) tại H)

                  Góc CMD =90 độ(góc nt chắn nửa đt)

             Mà góc CHE và góc CMD ở vị trí đối nhau

 ⇒ Tứ giác CMEH nội tiếp

Câu b:

   Xét \(\Delta NACva\Delta NMB\) có :

     Góc N chung

     Góc NCA = góc NBM (cùng chắn cung MA)

⇒ \(\Delta NAC\) đồng dạng \(\Delta NBM\) (góc góc)

  ⇒\(\dfrac{NM}{NA}\)=\(\dfrac{NB}{NC}\)⇔NM.NC=NA.NB

Câu c:

Có góc PMA=90 độ ( góc nt chắn nửa đt)→PM\(\perp\)AK

                                                            Mà IK\(\perp\)AK

                                           ⇒IK song song với MP (từ vuông góc đến song song

 

1.   Cho hpt :  \(\hept{\begin{cases}mx+y=3\\9x+my=2m+3\end{cases}}\)a) Giải pt với m = 2b) Tìm m để pt có 1 nghiệm, vô nghiệm, vô số nghiệmc) Tìm m để pt có nghiệm dươngđ) Tìm m để pt có nghiệm nguyên âm 2. Từ điểm M nằm ngoài (O) kẻ cát tuyến MCD. Tiếp tuyến với (O) tại C,D cắt nhau tại A. Gọi H là hình chiếu của A trên OM. Chứng minh:a) 5 điểm C,Đ,O,A,H cùng thuộc 1 đường trònb) MH.MO=MC.MDc) Kẻ...
Đọc tiếp

1.   Cho hpt :  \(\hept{\begin{cases}mx+y=3\\9x+my=2m+3\end{cases}}\)

a) Giải pt với m = 2

b) Tìm m để pt có 1 nghiệm, vô nghiệm, vô số nghiệm

c) Tìm m để pt có nghiệm dương

đ) Tìm m để pt có nghiệm nguyên âm 

2. Từ điểm M nằm ngoài (O) kẻ cát tuyến MCD. Tiếp tuyến với (O) tại C,D cắt nhau tại A. Gọi H là hình chiếu của A trên OM. Chứng minh:
a) 5 điểm C,Đ,O,A,H cùng thuộc 1 đường tròn
b) MH.MO=MC.MD
c) Kẻ tiếp tuyến MB. Chứng minh: MH.MO=MB^2
d) A,H,B thẳng hàng
e) AH cắt (O) tại E.Cm ME là tiếp tuyến của (O)
3. Cho tam giác ABC nhọn, nối tiếp đường tròn tâm O. Từ B,C kẻ tiếp tuyến với đường tròn, chúng cắt nhau tại D. Từ D kẻ cát tuyến song song với AB cắt đường tròn tại E,F và cắt AC tại I.
a) Cm góc DOC bằng góc BAC
b) 4 điểm O,I,D,C nằm trên 1 đường tròn
c) Cm IE=IF
d) ID là tia phân giác góc BIC
e) Cho B,C cố định, khi A chuyển động trên cung BC lớn thì I di chuyển trên đường nào ?

  giúp mk vs mn, mk đg cần gấp ............

1
18 tháng 4 2018

mn ơi giúp mk vs

10 tháng 2 2016

1)Xét tứ giác EMAF có 3 goc vg => AEMF la hcn => các điểm A,E,F,H cùng nằm trên một đường tròn 

2)

10 tháng 2 2016

dùng tứ giác nội tiếp là ra bạn à

 

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB...
Đọc tiếp

1/ Cho đường tròn (O) đường kính AB và 1 điểm C trên đường tròn.Từ O kẻ 1 đường thảng song song với dây AC , đường thảng này cắt tiếp tuyến tại B của đường tròn ở điển C A) CM: OD là phân giác của góc BOC b) CN: CD là tiếp tuyến của đường tròn

2/ Cho đường tròn (O;R), H là điểm bên trong đường tròn (H không trùng với O). Vẽ đưởng kính AB đi qua H (HB < HA). Vẽ dây CD vuông góc với AB tại H. CMR:
a) Góc BCA = 90 độ           b) CH . HD = HB . HA       c) Biết OH = R/2. Tính diện tích  tam giác ACD theo R

3/ Cho tam giác MAB,  vẽ đường tròn (O) đường kính AB cắt MA ở C,  cắt MB ở D. Kẻ AP vuông góc CD , BQ cuông góc CD. Gọi H là giao điểm AD và BC. CM: 
a) CP = DQ                    b) PD . DQ = PA . BQ và QC . CP = PD . QD                 c) MH vuông góc AB\

4/ Cho đường tròn (O;5cm) đường kính AB,  gọi E là 1 điểm trên AB sao cho BE = 2cm.Qua trung điểm kH của đoạn AE vẽ dây cung CD vuông góc AB.
a) Tứ giác ACED là hình gì? Vì sao?                b)Gọi I là giao điểm của DE với BC. CMR:I thuộc đường tròn (O') đường kính EB
c) CM HI là tiếp điểm của đường tròn (O')          d) Tính độ dài đoạn HI

5/ Cho đường tròn (0) đường kính AB = 2R. Gọi I là trung điểm của AO, qua I kẻ dây CD vuông góc với OA.
a) Tứ giác ACOD là hình gì? tại sao?   
b) CM tam giác BCD đều
c) Tính chu vi và diện tích tam giác BCD theo R

6/ Cho tam giác ABC vuông tại A có đường cao AH. Biết AB = 9cm; BC = 15cm
a) Tính độ dài các cạnh AC, AH, BH, HC
b) Vẽ đường tròn tâm B, bán kính BA. Tia AH cắt (B) tại D. CM: CD là tiếp tuyến của (B;BA)
c) Vẽ đường kính DE. CM: EA // BC
d) Qua E vẽ tiếp tuyến d với (B). Tia CA cắt d tại F, EA cắt BF tại G. CM: CF = CD + EF và tứ giác AHBG là hình chữ nhật

7/ Cho đường tròn (O) đường kính AB, điểm M thuộc đường tròn. Vẽ điểm N đối xứng với A qua M. BN cắt đường tròn ở C. gọi E là giao điểm của AC và BM.
a) CMR: NE vuông góc AB
b) Gọi F là điểm đối xứng với E qua M. CMR: FA là tiếp tuyến của đường tròn (O)
c) CM: FN là tiếp tuyến của đường tròn (B;BA)

8/ Cho nửa đường tròn (O), đường kính AB.Từ một điểm M trên nửa đường tròn ta vẽ tiếp tuyến xy. Từ A ta vẽ AD vuông góc với xy tại D
a) CM: AD // OM
b) Kẻ BC vuông góc với xy tại C. CMR: MC = MD
 

2
18 tháng 9 2016

Cần giải thì liên lạc face 0915694092 nhá

7 tháng 12 2017

giúp tôi trả lời tất cả câu hỏi đề này cái