Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(\frac{99-x}{101}+\frac{97-x}{103}+\frac{95-x}{105}+\frac{93-x}{107}=-4\)
\(\Leftrightarrow \frac{99-x}{101}+1+\frac{97-x}{103}+1+\frac{95-x}{105}+1+\frac{93-x}{107}+1=0\)
\(\Leftrightarrow \frac{99-x+101}{101}+\frac{97-x+103}{103}+\frac{95-x+105}{105}+\frac{93-x+107}{107}=0\)
\(\Leftrightarrow \frac{200-x}{101}+\frac{200-x}{103}+\frac{200-x}{105}+\frac{200-x}{107}=0\)
\(\Leftrightarrow (200-x)\left(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\right)=0\)
Vì \(\frac{1}{101}+\frac{1}{103}+\frac{1}{105}+\frac{1}{107}\neq 0\) nên suy ra \(200-x=0\Rightarrow x=200\)
Bài 2:
\(\frac{x+14}{86}+\frac{x+15}{85}+\frac{x+16}{84}+\frac{x+116}{4}=0\)
\(\Leftrightarrow \frac{x+14}{86}+1+\frac{x+15}{85}+1+\frac{x+16}{84}+1+\frac{x+17}{83}+1+\frac{x+116}{4}-4=0\)
\(\Leftrightarrow \frac{x+100}{86}+\frac{x+100}{85}+\frac{x+100}{84}+\frac{x+100}{83}+\frac{x+100}{4}=0\)
\(\Leftrightarrow (x+100)\left(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\right)=0\)
Vì \(\frac{1}{86}+\frac{1}{85}+\frac{1}{84}+\frac{1}{83}+\frac{1}{4}\neq 0\). Do đó \(x+100=0\Rightarrow x=-100\)
Câu 2:
ĐKXĐ: \(\left[{}\begin{matrix}1-9x^2\ne0\\1+3x\ne0\\1-3x\ne0\end{matrix}\right.\Rightarrow \left[{}\begin{matrix}x\ne\dfrac{-1}{3}\\x\ne\dfrac{1}{3}\end{matrix}\right.\)
\(\dfrac{12}{1-9x^2}=\dfrac{1-3x}{1+3x}-\dfrac{1+3x}{1-3x}\left(1\right)\)
\(\left(1\right):\dfrac{12}{\left(1-3x\right)\left(1+3x\right)}-\dfrac{\left(1-3x\right)\left(1-3x\right)}{\left(1-3x\right)\left(1+3x\right)}+\dfrac{\left(1+3x\right)\left(1+3x\right)}{\left(1-3x\right)\left(1+3x\right)}=0\)
\(\Leftrightarrow 12-\left(1-3x-3x+9x^2\right)+\left(1+3x+3x+9x^2\right)=0\)
\(\Leftrightarrow 12-1+3x+3x-9x^2+1+3x+3x+9x^2=0\)
\(\Leftrightarrow12x+12=0\\ \Leftrightarrow12x=-12\\ \Leftrightarrow x=-1\left(TM\right)\)
Vậy \(S=\left\{-1\right\}\)
4)a)\(\dfrac{x+5}{x-5}-\dfrac{x-5}{x+5}=\dfrac{20}{x^2-25}\)(1)
ĐKXĐ:\(\left\{{}\begin{matrix}x-5\ne0\\x+5\ne0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ne5\\x\ne-5\end{matrix}\right.\)
(1)\(\Rightarrow\left(x+5\right)\left(x+5\right)-\left(x-5\right)\left(x-5\right)=20\)
\(\Leftrightarrow x^2+10x+25-\left(x^2-10x+25\right)=20\)
\(\Leftrightarrow x^2+10x+25-x^2+10x-25=20\)
\(\Leftrightarrow x^2-x^2+10x+10x=-25+25=20\)
\(\Leftrightarrow20x=20\)
\(\Leftrightarrow x=1\left(nh\text{ậ}n\right)\)
S=\(\left\{1\right\}\)
\(\dfrac{2}{x-14}-\dfrac{5}{x-13}=\dfrac{2}{x-9}-\dfrac{5}{x-11}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne9;11;13;14\\\left(\dfrac{2}{x-14}-\dfrac{2}{3}\right)-\left(\dfrac{5}{x-13}-\dfrac{5}{4}\right)=\left(\dfrac{2}{x-9}-\dfrac{1}{4}\right)-\left(\dfrac{5}{x-11}-\dfrac{5}{6}\right)\end{matrix}\right.\)
\(\Leftrightarrow2\left(\dfrac{x-17}{3\left(x-14\right)}\right)-5\left(\dfrac{x-17}{4\left(x-13\right)}\right)=\left(\dfrac{x-17}{4\left(x-9\right)}\right)-5\left(\dfrac{x-17}{6\left(x-11\right)}\right)\)
\(\left(x-17\right)\left[\dfrac{2}{3\left(x-14\right)}-\dfrac{5}{4\left(x-13\right)}+\dfrac{5}{6\left(x-11\right)}-\dfrac{1}{4\left(x-9\right)}\right]=0\)
[..] vô nghiệm
x=17
Lời giải:
Bài của bạn ngonhuminh cơ bản không đúng do không có cơ sở khẳng định biểu thức trong ngoặc vuông vô nghiệm.
ĐKXĐ: \(x\neq \left\{9;11;13;14\right\}\)
\(\frac{2}{x-14}-\frac{5}{x-13}=\frac{2}{x-9}-\frac{5}{x-11}\)
\(\Leftrightarrow 2\left(\frac{1}{x-14}-\frac{1}{x-9}\right)=5\left(\frac{1}{x-13}-\frac{1}{x-11}\right)\)
\(\Leftrightarrow \frac{10}{(x-14)(x-9)}=\frac{10}{(x-13)(x-11)}\)
\(\Rightarrow (x-14)(x-9)=(x-13)(x-11)\)
\(\Leftrightarrow x^2-23x+126=x^2-24x+143\)
\(\Leftrightarrow x-17=0\Leftrightarrow x=17\)
Thử lại thấy thỏa mãn.
Vậy \(x=17\)
\(\frac{2}{x-14}\) -\(\frac{5}{x-13}\)= \(\frac{2}{x-9}\)- \(\frac{5}{x-11}\)
ĐKXĐ : x\(\ne\)14;13;9;11
(=) \(\frac{2}{x-14}\)- \(\frac{5}{x-13}\)= \(\frac{2}{x-9}\)-\(\frac{5}{x-11}\)
(=) \(\frac{2}{x-14}\)-\(\frac{2}{x-9}\)=\(\frac{5}{x-13}\)-\(\frac{5}{x-11}\)
(=) \(\frac{2\left(x-9\right)}{\left(x-14\right)\left(x-9\right)}\)-\(\frac{2\left(x-14\right)}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{5\left(x-11\right)}{\left(x-13\right)\left(x-11\right)}\)-\(\frac{5\left(x-13\right)}{\left(x-13\right)\left(x-11\right)}\)
(=) \(\frac{2x-18-2x+28}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{5x-55-5x+65}{\left(x-13\right)\left(x-11\right)}\)
(=) \(\frac{10}{\left(x-14\right)\left(x-9\right)}\)=\(\frac{10}{\left(x-13\right)\left(x-11\right)}\)
=) ( x - 14 ) ( x - 9 ) = ( x - 13 ) ( x - 11 )
(=) x2 - 9x - 14x + 126 = x2 - 13x - 11x + 143
(=) x - 17 = 0
(=) x = 17
Vậy phương trình có nghiệm là: x = 17
\(1-\dfrac{5}{14}-\dfrac{5}{84}-\dfrac{5}{204}-\dfrac{5}{374}\) =\(1-\left(\dfrac{1}{1.14}+\dfrac{1}{14.6}+\dfrac{1}{6.34}+\dfrac{1}{34.11}\right)\)
= \(1-\left(\dfrac{1}{1}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{34}+\dfrac{1}{34}-\dfrac{1}{11}\right)\)
= 1 - \(\left(1-\dfrac{1}{11}\right)\) = \(1-\dfrac{10}{11}=\dfrac{1}{11}\)
\(=1-\dfrac{5}{2\cdot7}-\dfrac{5}{7\cdot12}-\dfrac{5}{12\cdot17}-\dfrac{5}{17\cdot22}\)
\(=1-\left(\dfrac{1}{2}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{12}+\dfrac{1}{12}-\dfrac{1}{17}+\dfrac{1}{17}-\dfrac{1}{22}\right)\)
\(=5-\dfrac{11-1}{22}=5-\dfrac{10}{22}=5-\dfrac{5}{11}=\dfrac{50}{11}\)