K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2024

Không có a và b thỏa mãn đề bài

24 tháng 9 2017

a) x= 46/99

b)x=3/2

24 tháng 9 2017

a. 0,31 + x = 0,7

=>0,31 - 0,7 = x

=> -0,39 = x

22 tháng 6 2020

       (x-2)(x+2)=0
<=>\(x^2-2^2=0\)
<=>\(x^2=2^2\)
<=>\(x^2=4\)
 => x   = \(\orbr{\begin{cases}2\\-2\end{cases}}\)

         (2x-2)(4x+7) = 0
<=>  2x-2       = -4x-7
<=>  2x + 4x  = -7-2
<=> 6x           = -9
<=> x             = \(\frac{-3}{2}\)
 
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và \(a^2-b^2+2c^2\)=108
Áp dụng tính chất dãy tỉ số bằng nhau ta có ;
\(\frac{a^2}{4}=\frac{b^2}{9}=\frac{2c^2}{32}\)\(\frac{a^2-b^2+2c^2}{4-9+32}=\frac{108}{27}\)= 4 

=> a = 2.4 = 8
=> b= 3.4   = 12
=> c = 4.4 =16

28 tháng 5 2019

a,  3x-  6x  >  0

=>    3x2  >  6x      ( Với mọi x )

=>   3xx  >  6x

=>   3x > 6   =>   x > 3

Vậy x > 3 là thỏa mãn yêu cầu

b, ( 2x - 3 ).( 2 - 5x ) \(\le\)0

=>  2x - 3  \(\le\)0      Hoặc   2 -  5x  \(\le\)0

Trường hợp 1:    2x - 3  \(\le\)0

          =>   2x \(\le\)3

          =>    x  \(\le\)\(\frac{3}{2}\)( 1 )

Trường hợp 2:          2 - 5x \(\le\)0

          =>    2 \(\le\)5x

          =>   x   \(\le\frac{2}{5}\)( 2 )

Từ ( 1 ) và ( 2 ) suy ra:

\(\le\frac{3}{2}\)Hoặc  x\(\le\frac{2}{5}\)là thỏa mãn

Mà \(\frac{2}{5}< \frac{3}{2}\)suy ra   x\(\le\)\(\frac{3}{2}\)Là thỏa mãn yêu cầu

Vậy ....

c, x2 - 4 \(\ge\)0

=>  x2 \(\ge\)4

=>  x2   \(\ge\)22

=> x \(\ge\)2

Vậy x\(\ge\)2 là thỏa mãn yêu cầu

~Haruko~

28 tháng 5 2019

a) (3x)2 - 6x > 0

=> 3x (3x - 2) > 0

*Trường hợp 1: 

  • 3x > 0 và 3x - 2 > 0

       => x > 0 và x > 2/3     (1)

*Trường hợp 2:

  • 3x < 0 và 3x - 2 < 0

       => x < 0 và x < 2/3     (2)

*** Từ (1) (2) => x > 0 hoặc x < 2/3 sẽ thỏa mãn bất phương trình trên.

23 tháng 5 2016

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

23 tháng 5 2016

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

17 tháng 11 2016

x2+16x+60=0

<=> x2+10x+6x+60 

<=>x(x+10)+6(x+10)

<=>(x+6).(x+10)=0

=>\(\orbr{\begin{cases}x+6=0\\x+10=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-6\\x=-10\end{cases}}\)

b/9x2+6x+1=0

<=>9x2+3x+3x+1

<=>3x(3x+1)+(3x+1)

<=>(3x+1)(3x+1)=0

=> 3x+1=0=> x= \(\frac{-1}{3}\)

c/ x-\(2\sqrt{x}\)-3=0

<=>x+\(\sqrt{x}\)-3\(\sqrt{x}\)-3

<=>\(\sqrt{x}\)(\(\sqrt{x}\)+1)-3(\(\sqrt{x}+1\))

<=>\(\left(\sqrt{x}+1\right).\left(\sqrt{x}-3\right)\)=0

=>\(\orbr{\begin{cases}\sqrt{x}+1=0\\\sqrt{x}-3=0\end{cases}}\)<=>\(\orbr{\begin{cases}\sqrt{x}=-1\\\sqrt{x}=3\end{cases}}\)=>\(\orbr{\begin{cases}x\in\Phi\\x\in\left\{9;-9\right\}\end{cases}}\)

5 tháng 11 2016

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

<=> \(\left[\begin{array}{nghiempt}x-\frac{1}{3}>0\\5x+3< 0\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x-\frac{1}{3}< 0\\5x+3>0\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\5x< 3\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\5x>3\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< \frac{3}{5}\end{array}\right.\) hoặc \(\left[\begin{array}{nghiempt}x< \frac{1}{3}\\x>\frac{3}{5}\end{array}\right.\)

Vậy...

5 tháng 11 2016

a) \(\left(x-\frac{1}{3}\right)\left(5x+2\right)>0\)

\(\Leftrightarrow\begin{cases}x-\frac{1}{3}>0\\5x+2>0\end{cases}\) hoặc \(\begin{cases}x-\frac{1}{3}< 0\\5x+2< 0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>\frac{1}{3}\\x>-\frac{2}{5}\end{cases}\) hoặc \(\begin{cases}x< \frac{1}{3}\\x< -\frac{2}{5}\end{cases}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x>\frac{1}{3}\\x< -\frac{2}{5}\end{array}\right.\)

b) \(\left(5x+3\right)\left(3x-2\right)< 0\)

\(\Leftrightarrow\begin{cases}5x+3>0\\3x-2< 0\end{cases}\) hoặc \(\begin{cases}5x+3< 0\\3x-2>0\end{cases}\)

\(\Leftrightarrow\begin{cases}x>-\frac{3}{5}\\x< \frac{2}{3}\end{cases}\) hoặc \(\begin{cases}x< -\frac{3}{5}\\x>\frac{2}{5}\end{cases}\) (loại)

\(\Leftrightarrow-\frac{3}{5}< x< \frac{2}{3}\)

 

5 tháng 5 2019

a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)

=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)

Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)

=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)

b,Tương tự 

\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)

=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)

12 tháng 8 2018

Đây là giải bất phương trình .

a, \(x.\left(x-3\right)< 0\Leftrightarrow\orbr{\begin{cases}x< 0\\x< 3\end{cases}\Leftrightarrow x< 3.}\)

b, \(x.\left(x-3\right)>0\Leftrightarrow\orbr{\begin{cases}x>0\\x>3\end{cases}\Leftrightarrow x>3}\)

c, \(\left(x+2\right).\left(x-5\right)< 0\Leftrightarrow\orbr{\begin{cases}x+2< 0\\x-5< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< -2\\x< 5\end{cases}\Leftrightarrow}x< 5}\)

d, \(\left(x+2\right).\left(x-5\right)>0\Leftrightarrow\orbr{\begin{cases}x+2>0\\x-5>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>-2\\x>5\end{cases}\Leftrightarrow}x>5}\)

12 tháng 9 2020

\(\left(x-\frac{2}{5}\right)\left(x+\frac{2}{7}\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{5}>0\\x+\frac{2}{7}>0\end{cases}\Leftrightarrow\orbr{\begin{cases}x>\frac{2}{5}\\x>-\frac{2}{7}\end{cases}\Leftrightarrow}x>\frac{2}{5}}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{5}< 0\\x+\frac{2}{7}< 0\end{cases}\Leftrightarrow\orbr{\begin{cases}x< \frac{2}{5}\\x< -\frac{2}{7}\end{cases}\Leftrightarrow}x< -\frac{2}{7}}\)

b) \(\left(2x-\frac{1}{2}\right)\left(3x-\frac{1}{3}\right)< 0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x< \frac{1}{4}\\x>\frac{1}{9}\end{cases}}\)

12 tháng 9 2020

a) ( x - 2/5 )( x + 2/7 ) > 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}x-\frac{2}{5}>0\\x+\frac{2}{7}>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{2}{5}\\x>-\frac{2}{7}\end{cases}\Leftrightarrow}x>\frac{2}{5}\)

2. \(\hept{\begin{cases}x-\frac{2}{5}< 0\\x+\frac{2}{7}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{2}{5}\\x< -\frac{2}{7}\end{cases}}\Leftrightarrow x< -\frac{2}{7}\)

Vậy với x > 2/5 hoặc x < -2/7 thì ( x - 2/5 )( x + 2/7 ) > 0

b) ( 2x - 1/2 )( 3x - 1/3 ) < 0

Xét hai trường hợp :

1. \(\hept{\begin{cases}2x-\frac{1}{2}>0\\3x-\frac{1}{3}< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x>\frac{1}{2}\\3x< \frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x>\frac{1}{4}\\x< \frac{1}{9}\end{cases}}\)( loại )

2. \(\hept{\begin{cases}2x-\frac{1}{2}< 0\\3x-\frac{1}{3}>0\end{cases}\Leftrightarrow}\hept{\begin{cases}2x< \frac{1}{2}\\3x>\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x< \frac{1}{4}\\x>\frac{1}{9}\end{cases}}\Leftrightarrow\frac{1}{9}< x< \frac{1}{4}\)

Vậy với 1/9 < x < 1/4 thì ( 2x - 1/2 )( 3x - 1/3 ) < 0