Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a+b+c)\(^2\) đây la hang đang thuc nâng cao e co muôn khai triên ra k ??
Chào em, em hãy xem lời giải dưới đây nhé!
Lời giải:
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
bz−cy/a=cx−az/b=ay−bx/c=abz−acy/a2=bcx−abz/b2=acy−bcx/c2
=abz−acy+bcx−abz+acy−bcx/a2+b2+c2 =0 (*)
Từ (*) suy ra bz−cy/a=0 nên bz−cy=0⇒bz=cy. Hay b/y=c/z (1)
Từ (*) suy ra cx−az/b=0 nên cx−az=0⇒cx=az. Hay c/z=a/x (2)
Từ (1) và (2) ta suy ra a/x=b/y=c/z.
b)
Có : x/z+y+1=y/x+z+1=z/x+y−2=x+y+z/2(x+y+z)=x+y+z=1/2
Từ đó, ta có : z/x+y−2=1/2⇒2z = x+y−2⇒2z+2=x+y
Lại có : x+y+z=1/2⇔2z+2+z=1/2⇔3z=1/2−2=−3/2⇔z=−1/2
Từ đó tìm đc x, y
Lời giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}=\frac{a(bz-cy)}{a^2}=\frac{b(cx-az)}{b^2}=\frac{c(ay-bx)}{c^2}\)
\(=\frac{a(bz-cy)+b(cx-az)+c(ay-bx)}{a^2+b^2+c^2}\)
\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)
\(\Rightarrow \left\{\begin{matrix} bz-cy=0\\ cx-az=0\\ ay-bx=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} bz=cy\\ cx=az\\ ay=bx\end{matrix}\right.\)
\(\Leftrightarrow \frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Do đó ta có đpcm.
Bạn tham khảo cách làm của bạn Thư Vy nhé :
Câu hỏi của George H. Dalton - Toán lớp 7 | Học trực tuyến
\(\frac{cy-bz}{x}=\frac{az-cx}{y}=\frac{bx-ay}{z}=\frac{xyc-bxz}{x^2}=\frac{ayz-xyc}{y^2}=\frac{xzb-ayz}{z^2}\)
\(=\frac{cxy-bxz+ayz-cxy+bxz-ayz}{x^2+y^2+z^2}=0\) ( theo t/c dãy tỉ số bằng nhau )
\(\Rightarrow\left\{{}\begin{matrix}cy=bz\\az=cx\\bx=ay\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{c}{z}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{a}{x}\end{matrix}\right.\Rightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)
Ta có:
\(\widehat{ABz}+\widehat{x'Bz}=180^o\) (kề bù)
\(\Leftrightarrow\widehat{ABz}+75^o=180^o\\ \Leftrightarrow\widehat{ABz}=180^o-75^o=105^o\)
Mà \(\widehat{yAx'}=105^o=\widehat{ABz}\)
\(\Rightarrow Ay//Bz\) (2 góc trên bằng nhau ở vị trí so le trong)
hay \(yy'//Bz\) (A nằm trên đoạn \(yy'\))
Cách 2:
Ta có:
\(\widehat{BAy'}+\widehat{yAB}=180^o\) (kề bù)
\(\Leftrightarrow\)\(\widehat{BAy'}=180^o-\widehat{yAB}\)
\(\Leftrightarrow\widehat{BAy'}=180^o-105^o=75^o\)
Mà \(\widehat{x'Bz}=75^o=\widehat{BAy'}\)
\(\Rightarrow Bz//Ay'\) (2 góc trên bằng nhau ở vị trí đồng vị)
hay \(Bz//yy'\) (A nằm trên đoạn \(yy'\))