\(B=\frac{x^2-2x+2011}{x^2}\)với x >...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2018

Ta có :

 \(B=\frac{x^2-2x+2011}{x^2}\)

\(B=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)

\(B=1-\frac{2}{x}+\frac{2011}{x^2}\)

\(B=\left(\frac{\sqrt{2011}^2}{x^2}-\frac{2}{x}+\frac{1}{2011}\right)+\frac{2010}{2011}\)

\(B=\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2+\frac{2010}{2011}\)

Mà : \(\left(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}\right)^2\ge0\forall x\)

\(\Rightarrow B\ge\frac{2010}{2011}\)

Dấu "=" xảy ra khi :

\(\frac{\sqrt{2011}}{x}-\frac{1}{\sqrt{2011}}=0\)

\(\Leftrightarrow x=2\sqrt{2011}\)

Vậy \(MinB=\frac{2010}{2011}\Leftrightarrow x=2\sqrt{2011}\)

14 tháng 5 2018

Ta có \(A=\frac{x^2-2x+2011}{x^2}\)

\(=\frac{x^2}{x^2}-\frac{2x}{x^2}+\frac{2011}{x^2}\)

\(=1-\frac{2}{x}+\frac{2011}{x^2}\)

Đặt \(\frac{1}{x}=y\)ta có:

\(A=1-2y+2011y^2\)

\(A=2011y^2-2y+1\)

\(A=2011\left(y^2-\frac{2}{2011}y+\frac{2}{2011}\right)\)

\(=2011\left(y^2-2\times y\times\frac{1}{2011}+\frac{1}{2011^2}-\frac{1}{2011^2}+\frac{1}{2011}\right)\)

\(=2011\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

\(=2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)

Vì (y-\(\frac{1}{2011}\))\(^2\)>=0

\(\Rightarrow2011\left(y-\frac{1}{2011}\right)^2+\frac{2010}{2011}\)

Hay \(A>=\frac{2010}{2011}\)

10 tháng 4 2020

quyet

6 tháng 2 2017

bài này ta có thể giải theo 2 cách 

ta có A = \(\frac{x^2-2x+2011}{x^2}\)

\(\frac{x^2}{x^2}\)\(\frac{2x}{x^2}\)\(\frac{2011}{x^2}\)

= 1 - \(\frac{2}{x}\)\(\frac{2011}{x^2}\)

đặt \(\frac{1}{x}\)= y ta có 

A= 1- 2y + 2011y^2 

cách 1 : 

A = 2011y^2 - 2y + 1 

= 2011 ( y^2 - \(\frac{2}{2011}y\)\(\frac{1}{2011}\)

= 2011( y^2 - 2.y.\(\frac{1}{2011}\)\(\frac{1}{2011^2}\)\(\frac{1}{2011^2}\) + \(\frac{1}{2011}\)

= 2011 \(\left(\left(y-\frac{1}{2011}\right)^2\right)+\frac{2010}{2011^2}\)

= 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)

vì ( y - \(\frac{1}{2011}\)2>=0 

=> 2011\(\left(y-\frac{1}{2011}\right)^2\)\(\frac{2010}{2011}\)> = \(\frac{2010}{2011}\)

hay A >=\(\frac{2010}{2011}\)

cách 2  

A = 2011y^2 - 2y + 1 

= ( \(\sqrt{2011y^2}\)) - 2 . \(\sqrt{2011y}\)\(\frac{1}{\sqrt{2011}}\)\(\frac{1}{2011}\)\(\frac{2010}{2011}\)

\(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)

vì \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)> =0 

nên \(\left(\sqrt{2011y}-\frac{1}{\sqrt{2011}}\right)^2\)\(\frac{2010}{2011}\)>= \(\frac{2010}{2011}\)

hay A >= \(\frac{2010}{2011}\)

7 tháng 11 2015

\(\frac{2011^3+11^3}{2011^3+2000^3}=\frac{\left(2011+11\right)\left(2011^2+11^2-11.2011\right)}{\left(2011+200\right)\left(2011^2+2000^2-2000.2011\right)}\)

Cần chứng minh \(2011^2+11^2-2011.11=2011^2+2000^2-2000.2011\)

Điều này không khó.

\(B=1-\frac{2}{x}+\frac{2011}{x^2}=2011t^2-2t+1\text{ (với }t=\frac{1}{x}\text{)}\)

->Gộp hằng đẳng thức....

\(A=\left|\left(x+1\right)^2+\left(y-2\right)^2\right|-\left(x+y-1\right)^2+2xy\)

\(=\left(x+1\right)^2+\left(y-2\right)^2-\left(x^2+y^2-2x-2y+2xy+1\right)+2xy\)

\(=4x-2y+4\)

thay số.Lưu ý: \(y=16^{503}=\left(2^4\right)^{503}=2^{2012}\)

12 tháng 11 2018

a, ĐKXĐ: \(\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}\Rightarrow\hept{\begin{cases}5\left(x+5\right)\ne0\\x\ne0\\x\left(x+5\right)\ne0\end{cases}\Rightarrow}}\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b, \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(=\frac{x^3}{5x\left(x+5\right)}+\frac{5\left(2x-10\right)\left(x+5\right)}{5x\left(x+5\right)}+\frac{\left(50+5x\right).5}{5x\left(x+5\right)}\)

\(=\frac{x^3+10\left(x-5\right)\left(x+5\right)+250+25x}{5x\left(x+5\right)}\)

\(=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c, \(P=-4\Rightarrow\frac{x+5}{5}=-4\Rightarrow x+5=-20\Rightarrow x=-25\)

d, \(\frac{1}{P}\in Z\Rightarrow\frac{5}{x+5}\in Z\Rightarrow5⋮\left(x+5\right)\Rightarrow x+5\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\Rightarrow x\in\left\{-10;-6;-4;0\right\}\)

Mà x khác 0 (ĐKXĐ của P) nên \(x\in\left\{-10;-6;-4\right\}\)

21 tháng 9 2019

a) \(ĐKXĐ:\hept{\begin{cases}5x+25\ne0\\x\ne0\\x^2+5x\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)

b) \(P=\frac{x^2}{5x+25}+\frac{2x-10}{x}+\frac{50+5x}{x^2+5x}\)

\(P=\frac{x^3}{5x\left(x+5\right)}+\frac{10x^2-250}{5x\left(x+5\right)}+\frac{250+25x}{5x\left(x+5\right)}\)

\(P=\frac{x^3+10x^2+25x}{5x\left(x+5\right)}=\frac{x\left(x+5\right)^2}{5x\left(x+5\right)}=\frac{x+5}{5}\)

c) \(P=4\Leftrightarrow\frac{x+5}{5}=4\Leftrightarrow x+5=20\Leftrightarrow x=15\)

d) \(\frac{1}{P}=\frac{5}{x+5}\in Z\Leftrightarrow5⋮x+5\)

\(\Leftrightarrow x+5\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Lập bảng nhé

e) \(Q=P+\frac{x+25}{x+5}=\frac{x+30}{x+5}=1+\frac{25}{x+5}\)

\(Q_{min}\Leftrightarrow\frac{25}{x+5}_{min}\)

21 tháng 6 2021

a, sửa đề : \(C=\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}+\frac{1}{2-x}\)ĐK : \(x\ne-3;2\)

\(=\frac{\left(x+2\right)\left(x-2\right)-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-12-x}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)

b, Ta có : \(x^2-x=2\Leftrightarrow x^2-x-2=0\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\Leftrightarrow x=-1;x=2\)

Kết hợp với giả thiết vậy x = -1 

Thay x = -1 vào biểu thức C ta được : \(\frac{-1-4}{-1-2}=-\frac{5}{-3}=\frac{5}{3}\)

c, Ta có : \(C=\frac{1}{2}\Rightarrow\frac{x-4}{x-2}=\frac{1}{2}\Rightarrow2x-8=x-2\Leftrightarrow x=6\)( tm )

d, \(C>1\Rightarrow\frac{x-4}{x-2}>1\Rightarrow\frac{x-4}{x-2}-1>0\Leftrightarrow\frac{x-4-x+2}{x-2}>0\Leftrightarrow\frac{-2}{x-2}>0\)

\(\Rightarrow x-2< 0\Leftrightarrow x< 2\)vì -2 < 0 

21 tháng 6 2021

e, tự làm nhéee 

f, \(C< 0\Rightarrow\frac{x+4}{x+2}< 0\)

mà x + 4 > x + 2 

\(\hept{\begin{cases}x+4>0\\x+2< 0\end{cases}\Leftrightarrow\hept{\begin{cases}x>-4\\x< -2\end{cases}\Leftrightarrow-4< x< -2}}\)

Vì \(x\inℤ\Rightarrow x=-3\)( ktmđk )

Vậy ko có x nguyên để C < 0 

g, Ta có :  \(\frac{x+4}{x+2}=\frac{x+2+2}{x+2}=1+\frac{2}{x+2}\)

Để C nguyên khi \(x+2\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

x + 21-12-2
x-1-30-4

h, Ta có : \(D=C\left(x^2-4\right)=\frac{x+4}{x+2}.\frac{\left(x-2\right)\left(x+2\right)}{1}=x^2+2x-8\)

\(=\left(x+1\right)^2-9\ge-9\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTNN D là -9 khi x = -1 

14 tháng 3 2016

A=2x2+28x+101=2.(x2+14x+101/2)

=2.(x2+14x+49+101/2-49)

=2.(x2+14x+49+3/2)

=2.(x2+14x+49)+3

=2.(x+7)2+3 \(\ge\)3

Dấu "=" xảy ra khi: x=-7

Vậy GTNN của A là 3 tại x=-7

b)Với mọi x>0 lun ak