Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng t/c của đường phân giác: Trong tam giác, đường phân giác của 1 góc chia cạnh đối diện thành hai đoạn thẳng tỷ lệ với 2 cạnh kề của 2 đoạn ấy
Xét tg ABM ta có
\(\frac{AD}{AM}=\frac{BD}{BM}\Rightarrow\frac{AD}{BD}=\frac{AM}{BM}\) (1)
Xét tg ACM có
\(\frac{AE}{AM}=\frac{CE}{CM}\Rightarrow\frac{AE}{CE}=\frac{AM}{CM}\) (2)
Mà BM=CM \(\Rightarrow\frac{AM}{BM}=\frac{AM}{CM}\) (3)
Từ (1) (2) (3) \(\Rightarrow\frac{AD}{BD}=\frac{AE}{CE}\) => DE // BC (Talet đảo trong tg)
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
Xét ΔBDC có
E là trung điểm của BD(BE=ED; B,E,D thẳng hàng)
M là trung điểm của BC(gt)
Do đó: EM là đường trung bình của ΔBDC(Định nghĩa đường trung bình của tam giác)
⇒⇒ME//CD(Định lí 2 về đường trung bình của tam giác)
hay ME//ID
Xét ΔAEM có
D là trung điểm của AE(AD=DE; A,D,E thẳng hàng)
DI//EM(cmt)
Do đó: I là trung điểm của AM(Định lí 1 về đường trung bình của tam giác)
nên AI=IM(đpcm)
HT
Đáp án:
Giải thích các bước giải:
a, ta có tỉ lệ \(\frac{AM}{AB}\)= \(\frac{3}{3+2}\)= \(\frac{3}{5}\)
\(\frac{AN}{AC}\)= \(\frac{7,5}{7,5+5}\)= \(\frac{3}{5}\)do đó \(\frac{AM}{AB}\)= \(\frac{AN}{AC}\)suy ra đpcm
b ) vì MN//BC nên \(\frac{MK}{BI}\)= \(\frac{NK}{CT}\)= \(\frac{AK}{AI}\)mà BI = IC nên MK = KN suy ra K là trung điểm MN
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
TL:
a,G là trọng tâm của tam giác ABC nên GD =1/2 BG suy ra GM= GD
Tương tự EG=GN suy ra MNDE là hình bình hành
a) Trong tam giác ABC , có :
EA = EB ( CE là trung tuyến )
DA = DC ( DB là trung tuyến )
=> ED là đường trung bình của tam giác ABC
=> ED // BC (1) , DE = 1/2 BC (2)
Trong tam giác GBC , có :
MG = MB ( gt)
NG = NC ( gt)
=> MN là đương trung bình của tam giác GBC
=> MN // BC (3) , MN = 1/2 BC (4)
Từ 1 và 2 => ED // MN ( * )
Từ 3 và 4 => ED = MN ( **)
Từ * và ** => EDMN là hbh ( DHNB )