Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=3/2-5/6+/12-9/20+11/30-13/42+15/56-17/72+19/90
A=11/10
hok tốt nha
Có \(P=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{399}{400}< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{400}{401}\)
=> \(P^2< \frac{1}{2}\times\frac{2}{3}\times\frac{3}{4}\times...\times\frac{400}{401}=\frac{1}{401}< \frac{1}{400}=\frac{1}{20}\)
=> \(P< \frac{1}{20}\)(đpcm).
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+8}\)
= \(\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{8.9}{2}}\)
= \(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)=2\left(1-\frac{1}{9}\right)=2.\frac{8}{9}=\frac{16}{9}\)
\(A=1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+...+8}\)
\(A=\frac{1}{\frac{1.2}{2}}+\frac{1}{\frac{2.3}{2}}+\frac{1}{\frac{3.4}{2}}+...+\frac{1}{\frac{8.9}{2}}\)
\(A=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}\right)\)
\(A=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(A=2\left(1-\frac{1}{9}\right)=2.\frac{8}{9}=\frac{16}{9}\)
\(\text{Vậy A }=\frac{16}{9}\)
\(\text{#Hok tốt!}\)
\(\frac{3}{-8}=\frac{-3}{8}=\frac{-9}{24}\)
\(\frac{-7}{12}=\frac{-14}{24}\)
\(\frac{2}{3}=\frac{16}{24}\)
\(\frac{5}{6}=\frac{20}{24}\)
Các phân số theo thứ tự tăng dần là: \(\frac{-7}{12};\frac{3}{-8};\frac{2}{3};\frac{5}{6}\)
A = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + (3⁶ + 3⁷ + 3⁸) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + 3⁶.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + 3⁶.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + 3⁶ + ... + 3⁹⁹) ⋮ 13
Vậy A ⋮ 13