Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=> 4B= 4(1.2.3)+4(2.3.4)+............+4[(n-1)n(n+1)]
=> 4B= 1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+................+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=> 4B=(n-1)n(n+1)(n+2)
=> B=\(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Bài giải
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
Áp dụng tính kế thừa ta có:
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right)n\left(n+1\right).4\)
\(=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+\left(n-1\right)n\left(n+1\right)\left(n+2\right)\left[\left(n-2\right)\left(n-1\right)n\left(n+1\right)\right]\)\(=\left(n-1\right)n\left(n+1\right)\left(n+2\right)-0.1.2.3=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
mình quên rồi có gì các bạn chỉ dùm
A=1.2+2.3+3.4+...+n.(n+1)=[n.(n+1).(n+2)]:3
B=1.2.3+2.3.4+...+(n-1).n.(n+1)=[(n-1).n.(n+1).(n+2)]:4
easy như 1 trò đùa
Câu hỏi của GT 6916 - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo.
chúng ta hãy quy đồng rồi cộng chúng lại với nhau thì sẽ ra kết quả và cậu hãy xem lai kiến thức mới học của cậu đi
Áp dụng tính kế thừa của bài 1 ta có:
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)