Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Gọi M ( x 0 ; 2 + 3 x 0 - 1 ) ∈ C , x 0 ≠ 1 .
Phương trình tiếp tuyến tại M có dạng
∆ : y = - 3 x 0 - 1 2 ( x - x 0 ) + 2 + 3 x 0 - 1
+ Giao điểm của ∆ với tiệm cận đứng là A ( 1 ; 2 + 6 x 0 - 1 )
+ Giao điểm của ∆ với tiệm cận ngang là B( 2x0-1; 2).
Ta có S ∆ I A B = 1 2 I A . I B = 1 2 . 6 x 0 - 1 . 2 . x 0 - 1 = 2 . 3 = 6
Tam giác IAB vuông tại I có diện tích không đổi nên chu vi tam giác IAB đạt giá trị nhỏ nhất khi
IA=IB
+Với x 0 = 1 + 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 + 2 3 . Suy ra
d O , ∆ = 3 + 2 3 2
+ Với x 0 = 1 - 3 thì phương trình tiếp tuyến là ∆ : y = - x + 3 - 2 3 . Suy ra
d O , ∆ = - 3 + 2 3 2
Vậy khoảng cách lớn nhất là 3 + 2 3 2 gần với giá trị 5 nhất trong các đáp án.
Chọn D.
Đáp án A
Gọi
với a ≢ 1 .
Tiệm cận đứng của (C) là x-1.
Ta có . Vậy .
Xét \(M\left(m;1+\frac{5}{m-3}\right)\) thuộc đồ thị đã cho
Theo yêu cầu bài tài <=> \(\left|m-3\right|=\left|\frac{5}{m-3}\right|\Leftrightarrow m=3\pm\sqrt{5}\)
Vậy \(M\left(3\pm\sqrt{5};1\pm\sqrt{5}\right)\)
Dễ thấy tiệm cân đứng của \(\left(C\right)\) là \(d_1:x+1=0\), tiệm cân ngang là \(d_2:y-2=0\)
Vì \(M\in\left(C\right)\) nên \(M\left(x_0;\frac{2x_0-1}{x_0+1}\right)\), ta có:
\(d\left(M,d_1\right)=\left|x_0+1\right|;d\left(M,d_2\right)=\left|\frac{2x_0-1}{x_0+1}-2\right|=\left|\frac{-3}{x_0+1}\right|\)
Suy ra \(d\left(M,d_1\right)+d\left(M,d_2\right)=\left|x_0+1\right|+\left|\frac{-3}{x_0+1}\right|\ge2\sqrt{\left|x_0+1\right|.\left|\frac{-3}{x_0+1}\right|}=2\sqrt{3}\)
Đạt được khi \(M\left(\sqrt{3}-1;2-\sqrt{3}\right)\) hoặc \(M\left(-\sqrt{3}-1;2+\sqrt{3}\right)\)