chứng minh rằng x^2 +y^2 -8x +4y + 27 > 0 với mọi x,y

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2022

\(VT=x^2-8x+16+y^2+4y+4+7=\)

\(=\left(x-4\right)^2+\left(y+2\right)^2+7\ge7\forall x;y\)

\(\Rightarrow VT\ge0\forall x;y\)

3 tháng 10 2017

A) x2+4y22+z22-4x-6z+15>0 <=> (x2-2×2×x+22)+4y2+(z2-2×3×z+32) +(15 -22-32) >0

<=>(x-2)2+4y22+(z-3)2

3 tháng 10 2017

B) giải

(2X)2+ 2×2X×1 +1 >=0 với mọi X (   (2x+1) )

=> (2x+1)2+2 >0

6 tháng 8 2019

làm tắt ko hiểu thì hỏi 

a) \(=x^2+2.xy.\frac{1}{2}+\frac{1}{4}y^2-\frac{1}{4}y^2+y^2+1\)

\(=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)

b) \(=\left(x^2-2x+1\right)+\left(4y^2+8y+4\right)+\left(z^2-6x+9\right)+1\)

\(=\left(x-1\right)^2+\left(2y+2\right)^2+\left(z-3\right)^2+1>0\)

14 tháng 7 2018

a)  \(A=x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)       với mọi x

b)   \(B=x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\) với mọi x

c)  \(x^2+xy+y^2+1=\left(x+\frac{1}{2}y\right)^2+\frac{3}{4}y^2+1>0\)  với mọi x,y

d)  bạn kiểm tra lại đề câu d) nhé:

 \(x^2+4y^2+z^2-2x-6y+8z+15\)

\(=\left(x-1\right)^2+\left(2y-\frac{6}{4}\right)^2+\left(z+4\right)^2-\frac{13}{4}\)

14 tháng 7 2018

Đề câu d đúng mà!

13 tháng 12 2015

ai ủng hộ 9 li-ke tròn 100 Điểm hỏi đáp , thanks trước nha

2 tháng 9 2018

bạn cố tìm mọi cánh biến vế trái thành 1 dạng bình phương

rồi nó sẽ racau trả lời , gợi ý đó

13 tháng 7 2019

sử dụng hằng đẳng thức 1.2

8 tháng 9 2019

a) \(P=2x-x^2-2\)

\(=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\)

Vì \(-\left(x-1\right)^2\le0;\forall x\)

\(\Rightarrow-\left(x-1\right)^2-1\le0-1;\forall x\)

Hay \(P\le-1< 0;\forall x\)

Vậy biểu thức P luôn có giá trị âm với mọi x

b)  \(Q=-x^2-y^2+8x+4y-21\)

\(=-\left(x^2-8x+16\right)-\left(y^2-4y+4\right)-1\)

\(=-\left(x-4\right)^2-\left(y-2\right)^2-1\)

Vì \(\hept{\begin{cases}-\left(x-4\right)^2\le0;\forall x,y\\-\left(y-2\right)\le0;\forall x,y\end{cases}}\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2\le0;\forall x,y\)

\(\Rightarrow-\left(x-4\right)^2-\left(y-2\right)^2-1\le0-1;\forall x,y\)

Hay \(Q\le-1< 0;\forall x,y\)

Vậy biểu thức Q luôn âm với mọi gt của x,y

link tham khảo 

link https://olm.vn/hoi-dap/detail/83120416222.html

hok tốt

18 tháng 7 2016

a)\(x^2-8x+19=x^2-2.x.4+16+3=\left(x+4\right)^2+3\)

Vì \(\left(x+4\right)^2\ge0\Rightarrow\left(x+4\right)^2+3\ge3\Rightarrow x^2-8x+19\ge3\)

Vậy x2-8x+19 luôn nhận giá trị dương

mấy câu kia làm tương tự

6 tháng 7 2021

Ta có A = 2x2 + 8x  + 15 = 2x2 + 8x + 8 + 7 

 = 2(x2 + 4x + 4) + 7 = 2(x + 2)2 + 7 \(\ge7>0\)

b) Ta có A = x2 - 2x + y2 + 4y + 6 

 =(x2 - 2x  +1) + (y2 + 4y + 4) + 1

= (x - 1)2 + (y + 2)2 + 1 \(\ge1>0\)

7 tháng 12 2017

\(x^2+2y^2-2xy+2x-4y+3\)

\(=x^2+y^2+y^2-2xy+2x-2y-2y^2+1+1+1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(2x-2y\right)+1+1\)

\(=\left(x-y\right)^2+2\left(x-y\right)+1+\left(y-1\right)^2+1\)

\(=\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]+\left(y-1\right)^2+1\)

\(=\left(x-y+1\right)^2+\left(y-1\right)^2+1\)

\(\left(x-y+1\right)^2+\left(y-1\right)^2\ge0\forall x;y\)

Nên \(\left(x-y+1\right)^2+\left(y-1\right)^2+1>0\forall x;y\)

Vậy \(x^2+2y^2-2xy+2x-4y+3>0\forall x;y\)

7 tháng 12 2017
Ta có: x2+2y2-2xy+2x-4y+3 = (x2 +y2 +1 - 2xy + 2x - 2y) + (y2-2y+1) +1 = (x-y+1)2 + (y-1)2 + 1 Vì (x-y+1)2 ≥ 0 với mọi x,y ∈ R (y-1)2 ≥ 0 với mọi y ∈ R ⇔ (x-y+1)2 + (y-1)2 ≥ 0 với mọi x,y ∈R ⇔ (x-y+1)2 + (y-1)2 +1 ≥ 1 > 0 với mọi x,y ∈R Vậy x2+2y2-2xy+2x-4y+3 > 0 với mọi x,y ∈ R.
8 tháng 12 2018

Ta có
\(x^2+y^2-2x-4y+6=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+1=\)
\(\left(x-1\right)^2+\left(y-2\right)^2+1\)
\(\left(x-1\right)^2\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-2\right)^2+1\ge1\) >0 => đpcm