Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x+1-5⋮x+1\)
\(\Rightarrow5⋮x+1\)
\(\Rightarrow x+1=1;5;-1;-5\)
Đến đây thì dễ rồi tự lập bảng rồi tính
â) Ta có : \(2n-1⋮n+1\Leftrightarrow2n+2-2-1⋮n+1\)
\(\Leftrightarrow2\left(n+1\right)-2-1⋮n+1\)\(\Leftrightarrow2\left(n+1\right)-3⋮n+1\)
\(\Leftrightarrow2n-1⋮n+1\)khi \(3⋮n+1\Rightarrow n+1\in\)Ước của \(3\) \
\(\Leftrightarrow n+1\in\left(1;-1;3;-3\right)\)
\(\Leftrightarrow n\in\left(0;-2;2;-4\right)\)
Vậy \(n\in\left(-4;-2;0;2\right)\)
b) Ta có :\(9n+5⋮3n-2\Rightarrow3\left(3n-2\right)+6+5⋮3n-2\)
\(\Rightarrow3\left(3n-2\right)+11⋮3n-2\)
\(\Rightarrow9n+5⋮3n-2\)Khi \(11⋮3n-2\)
\(\Rightarrow3n-2\in U\left(11\right)\)
\(\Rightarrow3n-2\in\left(-11;-1;1;11\right)\)
\(\Rightarrow n\in\left(-3;1;\right)\)
Phần c) bạn tự làm nhé!
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
a)
x-3 | 1 | -1 | 7 | -7 |
2y +1 | 7 | -7 | 1 | -1 |
x | 4 | 2 | 10 | -4 |
y | 3 | -4 | 0 | -1 |
b)
2x +1 | 1 | -1 | 5 | -5 | 11 | -11 | 55 | -55 |
3y-2 | -55 | 55 | -11 | 11 | -5 | 5 | -1 | 1 |
x | 0 | -1 | 2 | -3 | 5 | -6 | 27 | -28 |
y | / | 19 | -3 | / | -1 | / | / | 1 |
Có 4 đáp số :(x =-1; y =19) ; (x =2 ; y =-3)
(x =5 ; y =-1) ; (x =-28 ; y =1)
a,(x-3)(2y+1)=7
Ta co: 7=1.7=7.1=(-1).(-7)=(-7).(-1)
\(\Rightarrow\)(x-3)(2y+1)=1.7 hay (x-3)(2y+1)=7.1 hay (x-3)(2y+1)=(-1).(-7) hay (x-3)(2y+1)=(-7).(-1)
TH1: \(\text{(x-3)(2y+1)=}1.7\Rightarrow\orbr{\begin{cases}\left(x-3\right)=1\\\left(2y+1\right)=7\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=3\end{cases}}\left(TM\right)}\)
TH2: \(\text{(x-3)(2y+1)=7.1}\Rightarrow\orbr{\begin{cases}\text{(x-3)=7}\\\text{ }\text{(2y+1)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=10\\y=0\end{cases}}\left(TM\right)}\)
TH3:\(\text{(x-3)(2y+1)=(-1).(-7)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-1}\\\text{(2y+1)=-7}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-8\end{cases}\left(TM\right)}}\)
TH4: \(\text{(x-3)(2y+1)=(-7).(-1)}\Rightarrow\orbr{\begin{cases}\text{(x-3)=-7}\\\text{(2y+1)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-4\\y=-1\end{cases}\left(TM\right)}}\)
Vay (x,y)={(4,3);(10,0);(4,-8);(-4;-1)}
b, (2x+1)(3y-2)=-55
Ta co: -55=-1.55=1.(-55)=55.(-1)=-55.1=-11.5=11.(-5)=5.(-11)=-5.11
\(\Rightarrow\)(2x+1)(3y-2)=-1.55 hay (2x+1)(3y-2)=1.(-55) hay (2x+1)(3y-2)=55.(-1) hay (2x+1)(3y-2)=-55.1 hay (2x+1)(3y-2)=-11.5
hay (2x+1)(3y-2)=11.(-5) hay (2x+1)(3y-2)=5.(-11) hay (2x+1)(3y-2)=-5.11
TH1:\(\text{(2x+1)(3y-2)=-1.55}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-1}\\\text{(3y-2)=55}\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\y=19\end{cases}\left(TM\right)}}\)
TH2:\(\text{(2x+1)(3y-2)=1.(-55)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=1}\\\text{(3y-2)=-55}\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\y=\frac{-53}{3}\end{cases}\Rightarrow}\left(loai\right)}\)
TH3:\(\text{(2x+1)(3y-2)=55.(-1)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=55}\\\text{(3y-2)=-1}\end{cases}\Rightarrow\orbr{\begin{cases}x=27\\y=\frac{1}{3}\end{cases}\left(loai\right)}}\)
TH4: \(\text{(2x+1)(3y-2)=-55.1}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-55}\\\text{(3y-2)=1}\end{cases}\Rightarrow\orbr{\begin{cases}x=-28\\y=1\end{cases}\left(TM\right)}}\)
TH5: \(\text{(2x+1)(3y-2)=-11.5}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-11}\\\text{(3y-2)=5}\end{cases}\Rightarrow\orbr{\begin{cases}x=-6\\y=\frac{7}{3}\end{cases}\left(loai\right)}}\)
TH6: \(\text{(2x+1)(3y-2)=11.(-5)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=11}\\\text{(3y-2)=-5}\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\y=-1\end{cases}\left(TM\right)}}\)
TH7:\(\text{(2x+1)(3y-2)=5.(-11)}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=5}\\\text{(3y-2)=-11}\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\y=-3\end{cases}\left(TM\right)}}\)
TH8:\(\text{(2x+1)(3y-2)=-5.11}\Rightarrow\orbr{\begin{cases}\text{(2x+1)=-5}\\\text{(3y-2)=11}\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\y=\frac{13}{3}\end{cases}\left(loai\right)}}\)
câu 1 : x = 7;4;3
nếu : x-1=6
=> x=7
nếu : x-1=3
=> x=4
nếu : x-1=2
=> x=3
Vậy : x thuộc tập hợp gồm 3 phần tử là : 7;3;4
a)
\(6⋮x-1\Rightarrow x-1\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(x-1=1\Rightarrow x=2\)
\(x-1=2\Rightarrow x=3\)
\(x-1=3\Rightarrow x=4\)
\(x-1=6\Rightarrow x=7\)
Vậy \(x\in\left\{2;3;4;7\right\}\)
b)
\(14⋮2x+3\Rightarrow2x+3\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
Vì 2x + 3 là số lẻ và \(2x+3\ge3\Rightarrow2x+3=7\)
\(2x+3=7\)
\(\Rightarrow2x=7-3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
a) \(x^2-3x-5=x\left(x-3\right)-5\)
Để \(^2-3x-5\)chia hết cho x-3 thì x(x-3) -5 phải chia hết cho x-3
mà x(x-3) chia hết cho x-3 => -5 phải chia hết cho x-3
=> x-3\(\inƯ\left(-5\right)=\left\{-1;-5;1;5\right\}\)
Lập bảng giải tiếp
\(5x+2=5\left(x+1\right)-3\)
Để 5x+2 chia hết cho x+1 thì 5(x+1)-3 phải chia hết cho x+1
mà 5(x+1) chia hết cho x+1
=> -3 phải chia hết cho x+1
=> x+1\(\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\)
Lập bảng giải tiếp nhé! :3
ta có : 14 + x chia hết cho x + 3
vì 3 là số lẻ và 4 là số chẵn nên x phải là chẵn vì lẻ ko chia hết cho chẵn (14 + x) là lẻ và (x + 3) là chẵn
ta có : P = {x E N* | x chia hết cho 2} (x khác 0 vì 14 không chia hết cho 3)
nhưng vì 14 - 3 = 11 mà 11 là số lẻ nên phép tính đó là sai
a: =>3x-3+5 chia hết cho x-1
=>x-1 thuộc {1;-1;5;-5}
=>x thuộc {2;0;6;-4}
b: =>x(x+2)-7 chia hết cho x+2
=>x+2 thuộc {1;-1;7;-7}
=>x thuộc {-1;-3;5;-9}