Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là
(Nhập kết quả dưới dạng số thập phân gọn nhất)Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là 73,96 cm2
Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là
(Nhập kết quả dưới dạng số thập phân gọn nhất)Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là
(Nhập kết quả dưới dạng số thập phân gọn nhất)
A B C D G
mình vẽ hình xấu đừng cuòi nhé
Cho hình thang ABCD đáy nhỏ AB đáy lớn CD. Hai đường chéo AC và BD cắt nhau tại G. Biết diện tích tam giác AGD bằng và diện tích tam giác CGD bằng Tính diện tích hình thang ABCD.
Trả lời: Diện tích hình thang ABCD là 73,96 \(cm^2\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB~ΔOCD
=>\(\dfrac{S_{OAB}}{S_{OCD}}=\left(\dfrac{AB}{CD}\right)^2=\dfrac{1}{16}\)
=>\(S_{OCD}=16\cdot S_{OBA}\)
ta có: \(S_{OCD}-S_{OAB}=1995\)
=>\(16\cdot S_{OAB}-S_{OAB}=1995\)
=>\(15\cdot S_{OAB}=1995\)
=>\(S_{OAB}=1995:15=133\left(cm^2\right)\)
=>\(S_{OCD}=133+1995=2128\left(cm^2\right)\)
AB//CD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}=\dfrac{1}{4}\)
\(\dfrac{OA}{OC}=\dfrac{1}{4}\)
=>\(\dfrac{S_{BOA}}{S_{BOC}}=\dfrac{1}{4}\)
=>\(S_{BOC}=4\cdot S_{BOA}=4\cdot133=532\left(cm^2\right)\)
Vì OB/OD=1/4
nên \(\dfrac{S_{AOB}}{S_{AOD}}=\dfrac{1}{4}\)
=>\(S_{AOD}=532\left(cm^2\right)\)
\(S_{ABCD}=S_{ABO}+S_{BOC}+S_{COD}+S_{AOD}\)
\(=532+532+133+2128=3325\left(cm^2\right)\)