Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
17x3y chia hết cho 12 khi đồng thời chia hết cho 3 và 4
+ 17x3y chia hết cho 3 khi 1+7+x+3+y=11+(x+y) chia hết cho 3 => (x+y)={1;4;7;10;13;16;19}
+ 17x3y chia hết cho 4 khi 3y chia hết cho 4 => 3y={32; 36} => y={2;6}
Thay lần lượt các giá trị của y vào lần lượt các giá trị của x+y sẽ tìm được các giá trị x tương ứng
b/ 34x5y chia hết cho 36 khi đồng thời chia hết cho 4 và 9. Lý luận tương tự như câu a
1.
a) ( x - 140) : 7 = 33 - 23 x 3
=>( x - 140) : 7 = 27 - 8 x 3
( x - 140) :7 = 27 - 24
( x - 140) : 7 = 3
x - 140 = 3 x 7
x - 140 = 21
x = 21 + 140
x = 161
b) 2x : 25 = 1
2x - 5 = 1
=>2x - 5 = 20
=> x - 5 = 0
x = 0 + 5
x = 5
ta có 99=11.9 (9,11)=1 nên để 62xy427:99 thì 62xy427 chia hết cho 99
* chia hết cho9=>6+2+x+y+4+2+7 chia hết cho9 =>x+y=6
*chia hết cho 11 => (6+x+4+7)-(2+y+2+7) chia hết cho11
=> ta tìm được x=0 và y=6
Vì x2 ≥ 0 nên ta chỉ xét trường hợp x là số tự nhiên :
- Với x = 0 thì x2 + 5 = 5 => y ko tồn tại, loại
- Với x = 1 thì x2 + 5 = 6 => y ko tồn tại
- Với x = 2 thì x2 + 5 = 9 => y ko tồn tại
- Với x = 3 thì x2 + 5 = 14 => y ko tồn tại
- Với x = 4 thì x2 + 5 = 21 => y ko tồn tại
- Với x = 5 thì x2 + 5 = 30 => y ko tồn tại
- Với x = 6 thì x2 + 5 = 41 => y ko tồn tại
- Với x = 7 thì x2 + 5 = 54 => ko tồn tại
....
Nhận xét : Nếu x là bao nhiêu thì x2 + 5 có tận cùng là 5 ; 6 ; 9 ; 4 ; 1 => không thể là lập phương của 1 số tự nhiên.
Vậy x,y ko tồn tại
vì số đó chia hết cho 99 nên sẽ chia hết cho 9 và 11
số đó có tổng chữ số là:6+2+x+y+4+2+7=21+x+y sẽ chia hết cho 9. mà x+y<19
suy ra x+y thuộc{6;15}
vì số đó chia hết cho 11 nên tổng chữ số hàng lẻ -tổng chữ số hàng chẵn chia hết cho 11
suy ra [6+x+4+7]-[2+y+2] chia hết cho 11
suy ra [17+x]-[4+y] sẽ chia hêt cho 11
13+x-y sẽ chia hết cho 11
13+[x-y] sẽ chia hết cho 11
suy ra x-y chỉ có thể là 9 hoặc -2 . nếu x-y=9 thi x=9; y=0; ko thỏa mãn
vậy x-y=-2 kêt hợp với x+y=6 hoặc15 ta loại đi t/h 15
vậy x+y=6 suy ra x=2;y=4
P = (4n-5)/(2n-1) = (4n-2 - 3)/(2n-1) = 2 - 3/(2n-1)
P thuộc Z khi và chỉ khi 3/(2n-1) thuộc Z <=> 2n-1 là ước của 3
* 2n - 1 = -1 <=> n = 0
* 2n - 1 = -3 <=> n = -1 (loại, vì n tự nhiên)
* 2n - 1 = 1 <=> n = 1
* 2n - 1 = 3 <=> n = 2
Vậy có 3 giá trị của n tự nhiên là: 0, 1, 2
a, 17x3y chia hết cho 15 => 17x3y chia hết cho 5
TH1: y=0 => Các số chia hết 15: 17130, 17430, 17730 => x=1 hoặc x=4 hoặc x=7
TH2: y=5 => Các số chia hết cho 15: 17235, 17535, 17835 => x=2 hoặc x=5 hoặc x=8
Vậy: Các cặp số (x;y) thoả mãn: (x;y)= {(1;0); (4;0); (7;0); (2;5); (5;5); (8;5)}
34x5y chia hết cho 36 => 34x5y là số chẵn và chia hết cho 3, chia hết cho 9
TH1: y=0 => Các số chia hết cho 36: Không có số thoả
TH2: y=2 => Các số chia hết cho 36: 34452 => x=4
TH3: y=4 => Các số chia hết cho 36: Không có số thoả
TH4: y=6 => Các số chia hết cho 36: 34056; 34956 => x=0 hoặc x=9
TH5: y=8 => Các số chia hết cho 36: Không có số thoả
=> Các số chia hết cho 36 tìm được: 34452; 34056 và 34956
Vậy: (x;y)={(4;2); (0;6); (9;6)}