tìm m để phương trình (m+1)x^2-(m-3)x+m+1=0  có 2 nghiệm thỏa mãn -1<x1<=x2<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2021

Đặt x2−2x+m=tx2−2x+m=t, phương trình trở thành t2−2t+m=xt2−2t+m=x

Ta có hệ {x2−2x+m=tt2−2t+m=x{x2−2x+m=tt2−2t+m=x

⇒(x−t)(x+t−1)=0⇒(x−t)(x+t−1)=0

⇔[x=tx=1−t⇔[x=tx=1−t

⇔[x=x2−2x+mx=1−x2+2x−m⇔[x=x2−2x+mx=1−x2+2x−m

⇔[m=−x2+3xm=−x2+x+1⇔[m=−x2+3xm=−x2+x+1

Phương trình hoành độ giao điểm của y=−x2+x+1y=−x2+x+1 và y=−x2+3xy=−x2+3x:

−x2+x+1=−x2+3x−x2+x+1=−x2+3x

⇔x=12⇒y=54⇔x=12⇒y=54

Đồ thị hàm số y=−x2+3xy=−x2+3x và y=−x2+x+1y=−x2+x+1

20 tháng 12 2022

Câu 1:
ĐKXĐ: x>=3

\(PT\Leftrightarrow\sqrt{x-3}=2x-m\)

=>x-3=(2x-m)^2

=>4x^2-4xm+m^2=x-3

=>4x^2-x(4m-1)+m^2+3=0

Δ=(4m-1)^2-4*4*(m^2+3)

=16m^2-8m+1-16m^2-48

=-8m-47

Để phương trình có nghiệm thì -8m-47>=0

=>m<=-47/8

AH
Akai Haruma
Giáo viên
2 tháng 12 2023

Bài đã đăng bạn hạn chế không đăng lại gây spam box toán nhé.

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:
Để pt có 2 nghiệm thì:

\(\left\{\begin{matrix} m+1\neq 0\\ \Delta=(m-3)^2-4(m+1)^2=-(m+5)(3m-1)\geq 0\end{matrix}\right.\Leftrightarrow m\neq -1; -5\leq m\leq \frac{1}{3}\)

Pt có 2 nghiệm $x_1,x_2\geq -1$

\(\Leftrightarrow \left\{\begin{matrix} x_1+x_2\geq -2\\ (x_1+1)(x_2+1)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1+x_2\geq -2\\ x_1x_2+(x_1+x_2)+1\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m-3}{m+1}\geq -2\\ \frac{m+1+m-3}{m+1}+1\geq 0\end{matrix}\right.\Leftrightarrow \frac{3m-1}{m+1}\geq 0\)

Vì $m\leq \frac{1}{3}$ nên $3m-1\leq 0$

$\Rightarrow m+1<0\Leftrightarrow m< -1$

Vậy $-5\leq m< -1$

26 tháng 11 2022

a: TH1: m=2

Pt sẽ là 3x-4=0

=>x=4/3(loại)

TH2: m<>2

\(\text{Δ}=\left(5-m\right)^2-4\left(m-2\right)\left(m-6\right)\)

\(=m^2-10m+25-4\left(m^2-8m+12\right)\)

\(=m^2-10m+25-4m^2+32m-48\)

\(=-3m^2+22m-23\)

Để phương trình có hai nghiệm phân biệt thì -3m^2+22m-23>0

=>\(\dfrac{11-2\sqrt{13}}{3}< x< \dfrac{11+2\sqrt{13}}{3}\)

a: |x1-x2|=2

=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)

\(\Leftrightarrow\left(\dfrac{m-5}{m-2}\right)^2-4\cdot\dfrac{m-6}{m-2}=4\)

\(\Leftrightarrow\dfrac{\left(m-5\right)^2-4\left(m^2-8m+12\right)}{\left(m-2\right)^2}=4\)

=>\(m^2-10m+25-4m^2+32m-48=4m^2-16m+16\)

=>-7m^2+38m-39=0

hay \(m=\dfrac{19\pm2\sqrt{22}}{7}\)

c: TH1: x1<x2<0<1

=>x1+x2<0 và x1x2>0

=>(m-5)/(m-2)<0 và (m-6)/(m-2)>0

\(\Leftrightarrow\left\{{}\begin{matrix}2< m< 5\\\left[{}\begin{matrix}m>6\\m< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

TH2: 0<x1<x2<1

=>x1x2<1 và 0<x1+x2<2

=>0<m-5/m-2<2 và m-6/m-2<1

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m-5-2m+4}{m-2}< 0\\\dfrac{m-6-m+2}{m-2}< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{m+1}{m-2}>0\\\dfrac{-4}{m-2}< 0\end{matrix}\right.\)

=>m>2

15 tháng 7 2019

1) \(x^2-2mx+m-2=0\) (1) 

pt (1) có \(\Delta'=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}>0\left(\forall m\right)\) 

=> pt luôn có 2 nghiệm phân biệt x1, x2 

Vi-et: \(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m-2\end{cases}}\)\(\Rightarrow\)\(M=\frac{2x_1x_2-\left(x_1+x_2\right)}{x_1^2+x_2^2-6x_1x_2}=\frac{2x_1x_2-\left(x_1+x_2\right)}{\left(x_1+x_2\right)^2-8x_1x_2}=\frac{2m-4-2m}{\left(2m\right)^2-8m-16}\)

\(=\frac{-4}{4m^2-8m-16}=\frac{-4}{4\left(m-1\right)^2-20}\ge\frac{-4}{-20}=\frac{1}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(m=1\)

xin 1slot sáng giải

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

Để pt có 2 nghiệm thì: 

\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)

Để $x_1< 0< x_2$

$\Leftrightarrow x_1x_2< 0$

$\Leftrightarrow \frac{m+5}{m}< 0$

$\Leftrightarrow -5< m< 0(2)$

$x_1< x_2< 2$

\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)

Từ $(1);(2);(3)$ suy ra $-5< m< -1$

 

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

NV
22 tháng 1 2024

\(\Leftrightarrow\left\{{}\begin{matrix}m+1\ne0\\\Delta'=m^2-\left(m+1\right)\left(m+6\right)>0\\x_1+x_2=\dfrac{2m}{m+1}>0\\x_1x_2=\dfrac{m+6}{m+1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\-7m-6>0\\\dfrac{2m}{m+1}>0\\\dfrac{m+6}{m+1}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< -\dfrac{6}{7}\\\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\\\left[{}\begin{matrix}m>-1\\m< -6\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< -6\)