x
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

\(x^4-2x^2-3=0\\ \Leftrightarrow x^4-3x^2+x^2-3=0\\ \Leftrightarrow x^2\left(x^2-3\right)+\left(x^2-3\right)=0\\ \Leftrightarrow\left(x^2+1\right)\left(x^2-3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2+1=0\left(voli\right)\\x^2-3=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

3 tháng 5 2023

`x^4 -2x^2 -3=0`

`<=>x^4 -2x^2 +1-4=0`

`<=>(x^2 -1)^2 =4`

\(< =>\left[{}\begin{matrix}x^2-1=2\\x^2-1=-2\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x^2=3\\x^2=-1\left(voli\right)\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\sqrt{3}\\x=-\sqrt{3}\end{matrix}\right.\)

12 tháng 9 2018

\(A=0.5\cdot4\sqrt{3-x}-\sqrt{3-x}-2\sqrt{3}+1=\sqrt{3-x}-2\sqrt{3}+1\) (xác định khi x=<3)

a)thay \(x=2\sqrt{2}\)vào a ra có

\(\sqrt{3-2\sqrt{2}}-2\sqrt{3}+1=\sqrt{\left(\sqrt{2}-1\right)^2}-2\sqrt{3}+1\)

\(=\sqrt{2}-1+2\sqrt{3}+1=\sqrt{2}+2\sqrt{3}\)

Để A=1<=> \(\sqrt{3-x}-2\sqrt{3}+1=1\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}+1-1=0\\ \Leftrightarrow\sqrt{3-x}-2\sqrt{3}=0\\ \Leftrightarrow3-x=12\Leftrightarrow x=-9\)

9 tháng 8 2016

a)
Xét hiệu \(\frac{a^3}{a^2+1}-\frac{1}{2}=\frac{2a^3-a^2-1}{2\left(a^2+1\right)}=\frac{2a^2\left(a-1\right)+\left(a-1\right)\left(a+1\right)}{2\left(a^2+1\right)}=\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\)
Do : \(a\ge1\Rightarrow a-1\ge0\)
\(a^2+a+1=\left(a+\frac{1}{4}\right)^2+\frac{3}{4}>0\Rightarrow2a^2+a+1>0\)
\(a^2+1>0\)
\(\Rightarrow\frac{\left(a-1\right)\left(2a^2+a+1\right)}{2\left(a^2+1\right)}\ge0\Leftrightarrow\frac{a^3}{a^2+1}-\frac{1}{2}\ge0\Leftrightarrow\frac{a^3}{a^2+1}\ge\frac{1}{2}\)
Tương tự \(\frac{b^3}{b^2+1}\ge\frac{1}{2};\frac{c^3}{c^2+1}\ge\frac{1}{2}\)
\(\Rightarrow\frac{a^3}{a^2+1}+\frac{b^3}{b^2+1}+\frac{c^3}{c^2+1}\ge\frac{3}{2}\)Dấu = xảy ra khi a=b=c=1

9 tháng 8 2016

Câu b cũng xét hiệu tương tự cấu a

 

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

Đặt \(\frac{1}{x-1}=a; \frac{1}{y-1}=b\) thì HPT trở thành:

\(\left\{\begin{matrix} a-3b=-1\\ 2a+4b=3\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a=\frac{1}{2}\\ b=\frac{1}{2}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \frac{1}{x-1}=\frac{1}{2}\\ \frac{1}{y-1}=\frac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=y=3\)

Vậy HPT có nghiệm $(x,y)=(3,3)$

21 tháng 10 2018

 ĐM !!! ĐỪNG NÓI CRUSH NỮA
24 + 2 + 2004 = 2030
ĐỪNG CÓ NÓI NỮA ĐÓ 

 

21 tháng 10 2018

ko liên qan thì đừng bận tâm

27 tháng 7 2021

\(T=x^4+y^4+z^4\)

áp dụng bđt bunhia cốp -xki với bộ số \(\left(x^2,y^2,z^2\right);\left(1,1,1\right)\)

\(\left(\left[x^2\right]^2+\left[y^2\right]^2+\left[z^2\right]^2\right)\left(1^2+1^2+1^2\right)\ge\left(x^2+y^2+z^2\right)^2\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)

\(\left(x^4+y^4+z^4\right)\ge\frac{\left(2xy+2yz+2xz\right)^2}{3}\)(bđt tương đương)

\(\left(x^4+y^4+z^4\right)\ge\frac{4}{3}\)

dấu "=" xảy rakhi và chỉ khi

\(\hept{\begin{cases}\frac{x^2}{1}=\frac{y^2}{1}=\frac{z^2}{1}\\x=y=z=1\end{cases}< =>\frac{1^2}{1}=\frac{1^2}{1}=\frac{1^2}{1}}\)(luôn đúng)

vậy dấu "=" có xảy ra

\(< =>MIN:T=\frac{4}{3}\)

27 tháng 7 2021

sửa dòng 3 dưới lên 

\(T\ge\frac{\left(xy+yz+xz\right)^2}{3}=\frac{1}{3}\)

Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}\)

Vậy GTNN T là 1/3 khi \(x=y=z=\frac{\sqrt{3}}{3}\)

15 tháng 11 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

15 tháng 11 2018

24+2+2004=2030