Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Từ đề bài suy ra (x^2 -7x+6)=0 hoặc x-5=0
Nếu x-5=0 suy ra x=5
Nếu x^2-7x+6=0 suy ra x^2-6x-(x-6)=0
Suy ra x(x-6)-(x-6)=0 suy ra (x-1)(x-6)=0
Suy ra x=1 hoặc x=6.
bài 1 ; \(\left(x^2-7x+6\right)\sqrt{x-5}=0\)
\(< =>\orbr{\begin{cases}x^2-7x+6=0\left(+\right)\\\sqrt{x-5}=0\left(++\right)\end{cases}}\)
\(\left(+\right)\)ta dễ dàng nhận thấy \(1-7+6=0\)
thì phương trình sẽ có nghiệm là \(\orbr{\begin{cases}x=1\\x=\frac{c}{a}=6\end{cases}}\)
\(\left(++\right)< =>x-5=0< =>x=5\)
Vậy tập nghiệm của phương trình trên là \(\left\{1;5;6\right\}\)
1) a/ để pt có 2 nghiệm pb <=> đen ta phẩy > 0
<=> (m-1)2 - 1.m2 >0
<=> m2-2m+1-m2 >0
<=> -2m+1 >0 .
<=> -2m > -1
<=> m < 1/2
vậy khi m < 1/2 thì pt có 2 nghiệm pb
2) để pt có 2 nghiệm <=> đen ta >= 0
<=> (-2)2 - m >= 0
<=> 4-m >= 0
<=> m <= 4
theo vi-et ta có:
x1+x2= 4
x1.x2= m
theo đầu bài ta có:
x12 + x22 = 10
<=> x12+2x1x2+x22 -2x1x2=10
<=> (x1+x2)2-2x1x2=10
<=> 42-2m = 10
<=> 2m =6
<=> m=3
vậy khi m = 3 thì pt có 2 nghiệm thỏa mãn x12+ x22=10
x2 - (m +2) + 2m = 0
\(\Delta\)= (-1)2(m + 2 ) 2 - 8m
= m2 + 4m + 4 -8m
= m2 - 4m + 4
= (m-2)2 \(\ge\)0 \(\forall\)m
\(\Rightarrow\)pt luôn có 2 nghiệm
theo hệ thức vi ét ta có
x1 + x2 = m + 2
x1 . x2 = 2m
ta có ( x1 + x2 ) 2 - x1x2 \(\le\)5
(m+ 2)2 - 2m \(\le\)5
m2 + 4m + 4 -2m \(\le\)5
m2 + 2m - 1 \(\le\)0
m2 + 2m + 1 \(\le\)2
( m+ 1 )2 \(\le\)2
m + 1 \(\le\sqrt{2}\)
m \(\le\sqrt{2}-1\)
vậy .................. khi m \(\le\)\(\sqrt{2}-1\)
Bảo đảm bài này có thi tuyển sinh nè em !
Theo hệ thức Vi - ét:
\(x_1+x_2=-\frac{b}{a}=\frac{m+2}{1}=m+2\)
\(x_1.x_2=\frac{c}{a}=\frac{2m}{1}=2m\)
Theo đề bài:
\(\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\left(m+2\right)^2-2m\le5\)
\(\Leftrightarrow m^2+4m+4-2m\le5\)
\(\Leftrightarrow m^2+2m-1\le0\)
\(\Leftrightarrow\orbr{\begin{cases}m\ge-1-\sqrt{2}\\m\le-1+\sqrt{2}\end{cases}}\) ( Cái này dùng máy tính bấm ra nha: (VN PLUS: more \(\downarrow\)1 1) (580VN X: menu A 2 4) )
( Còn nếu bài yêu cầu giải tay thì anh có giải tay ở phía dưới nha. )
\(\Leftrightarrow m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)
Vậy \(\left(x_1+x_2\right)^2-x_1x_2\le5,\forall m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)
Giải tay nè:
\(m^2+2m-1\le0\)
\(Cho:m^2+2m-1=0\)
\(\Delta=2^2-4.1.\left(-1\right)=8>0\)
\(\sqrt{\Delta}=\sqrt{8}=2\sqrt{2}\)
pt có 2 nghiệm pb:
\(x_1=\frac{-2+2\sqrt{2}}{2.1}=\frac{2.\left(-1+\sqrt{2}\right)}{2}=-1+\sqrt{2}\)
\(x_2=\frac{-2-2\sqrt{2}}{2.1}=\frac{2\left(-1-\sqrt{2}\right)}{2}=-1-\sqrt{2}\)
Bảng xét dấu:
x m^2+2m-1 -oo -1- v2 -1+ v2 +oo 0 o - + +
Vậy: \(m\in\left[-1-\sqrt{2};-1+\sqrt{2}\right]\)
HỌC TỐT !!!!
âu này làm như bt thôi
tthay nghiệm vào rồi tìm m
sau đó thay m vào tìm o còn lại
b, tìm đenta
=> đenta >=0
=> theo hệ thức viet
=> thay vào ot cần tìm m
hok tốt
mik nha
a)
Thế m = 2 vào phương trình được: \(x^2-4x+2+1=0\Leftrightarrow x^2-4x+3=0\)
nhẩm nghiệm có a + b + c = 0 (1 - 4 + 3 = 0) nên: \(x_1=1,x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Vậy phương trình có tập nghiệm \(S=\left\{1;3\right\}\)
b) \(\Delta'=\left(-2\right)^2-\left(m+1\right)=4-m-1=3-m\)
Để phương trình có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow3-m\ge0\Rightarrow m\le3\)
Theo vi ét có \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=m+1\end{matrix}\right.\)
Theo đề: \(x_1^2+x_2^2=5\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-5\left(x_1+x_2\right)=0\)
\(\Leftrightarrow4^2-2\left(m+1\right)-5.4=0\)
\(\Leftrightarrow16-20-2m-2=0\)
\(\Leftrightarrow-6-2m=0\Rightarrow m=-\dfrac{6}{2}=-3\) (thỏa mãn)
Vậy m = -3 là giá trị cần tìm.
a: Khi m=2 thì pt sẽ là x^2-4x+3=0
=>x=1; x=3
b: =>(x1+x2)^2-2x1x2-5(x1+x2)=0
=>4^2-2(m+1)-5*4=0
=>-4-2(m+1)=0
=>m+1=-2
=>m=-3