Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA là tiếp tuyến
MB là tiếp tuyến
Do đó: MA=MB
hay M nằm trên đường trung trực của AB(1)
Ta có: OA=OB
nên O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO\(\perp\)AB
a/ * dựa vào tính chất đường trung tuyến ứng vs 1 cạnh = 1/2 cạnh ấy thì tam giác đó vuông ta sẽ CM đc tg BCD vuông tại C
*Có AC=AB(vì đg thẳng là tiếp tuyến của đg tròn vuông góc với bk đi qua tiếp điểm)
=>A cách đều A và B
=>AH vuông góc BC
b/Áp dụng hệ thức lượng trong tam giác vuông ABO có : OH.OA=OB^2=R^2
mk cx đg làm bài này nhg ms chỉ đến đây thôi
a: OH*OM=OA^2=R^2
b: ΔOCD cân tại O
mà OI là đường trung tuyến
nên OI vuông góc với CD
Xét tứ giác OIAM có
góc OIM=góc OAM=90 độ
nên OIAM là tứ giác nội tiếp
c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có
góc HOK chung
Do đo: ΔOHK đồng dạng với ΔOIM
=>OH/OI=OK/OM
=>OI*OK=OH*OM=R^2=OC^2
mà CI vuông góc với OK
nên ΔOCK vuông tại C
=>KC là tiếp tuyến của (O)
Mình xin không vẽ hình vì nó bảo duyệt, không lên được. Với lại tớ sẽ chia bài này thành 5 câu trả lời (cho 3 câu a,b,c còn câu d chia làm 2 phần nữa) cho ngắn, dài quá nó cũng bảo duyệt.
a) Xét đường tròn (O) có 2 tiếp tuyến tại A và B cắt nhau tại M (gt)
\(\Rightarrow MA=MB\)\(\Rightarrow\)M nằm trên đường trung trực của đoạn AB. (1)
Mà \(OA=OB\left(=R\right)\)\(\Rightarrow\)O nằm trên đường trung trực của đoạn AB. (2)
Từ (1) và (2) \(\Rightarrow\)OM là trung trực của đoạn AB, mà H là giao điểm của OM và AB \(\Rightarrow OM\perp AB\)tại H (đpcm)
c) Xét \(\Delta ABD\)có (O) là đường tròn ngoại tiếp, AD là đường kính \(\Rightarrow\Delta ABD\)vuông tại B \(\Rightarrow AB\perp GD\)tại B
Mà \(OM\perp AB\left(cmt\right)\)\(\Rightarrow OM//GD\left(\perp AB\right)\)
Vì AD là đường kính của (O) \(\Rightarrow\)O là trung điểm của AD.
Xét \(\Delta ADG\)có O là trung điểm AD, \(OM//GD\)và \(M\in AG\)\(\Rightarrow\)M là trung điểm AG \(\Rightarrow AM=MG\left(đpcm\right)\)