Biết tan α = 2,4 hãy tính sin α , cos α , cot α

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

\(\sin\alpha=\frac{2}{3}\) nên a là góc nhọn trong tam giác vuông có cạnh đối là 2, cạnh huyền là 3 suy ra cạnh kề = \(\sqrt{5}\)

Vậy: \(\cos\alpha=\sqrt{\frac{5}{3}};\tan\alpha=\frac{2}{\sqrt{5}};\cot\alpha=\sqrt{\frac{5}{2}}\)

28 tháng 11 2017

lỡ 1 cạnh = 4 1 cạnh là 6 sao bn

1: 

a: sin a=căn 3/2

\(cosa=\sqrt{1-sin^2a}=\sqrt{1-\dfrac{3}{4}}=\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\)

\(tana=\dfrac{\sqrt{3}}{2}:\dfrac{1}{2}=\sqrt{3}\)

cot a=1/tan a=1/căn 3

b: \(tana=2\)

=>cot a=1/tan a=1/2

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=5\)

=>cos^2a=1/5

=>cosa=1/căn 5

\(sina=\sqrt{1-cos^2a}=\sqrt{\dfrac{4}{5}}=\dfrac{2}{\sqrt{5}}\)

c: \(cosa=\sqrt{1-\left(\dfrac{5}{13}\right)^2}=\dfrac{12}{13}\)

tan a=5/13:12/13=5/12

cot a=1:5/12=12/5

30 tháng 6 2017

xin lỗi mk ko thể giúp bn đc mk mới hc lp 7 thôi!

27 tháng 7 2018

a) Mình nghĩ là cos a = cot a . sin a chứ :))

CM nà :

Ta có : cot a =  \(\frac{AB}{AC}\)(1)

\(\frac{cosa}{sina}=\frac{AB}{BC}:\frac{AC}{BC}=\frac{AB}{AC}\left(2\right)\)

Từ (1) và (2)  \(\Rightarrow\)cot a =  \(\frac{cosa}{sina}\)

\(\Leftrightarrow\)cos a = cot a . sin a

b) Ta có : tan a =  \(\frac{AC}{AB}\)

Lại có : cot a =  \(\frac{AB}{AC}\)

\(\Rightarrow\)cos a . tan a =  \(\frac{AC.AB}{AB.AC}\)= 1 

Vậy ...

11 tháng 9 2015

D = \(\left(sin^2a+cos^2a\right)+\left(cos\left(90-a\right)-sina\right)+1+\left(tan^2\left(90-a\right)-\frac{1}{sin^2a}\right)\)

  \(=1+\left(sina-sina\right)+1+\left(cot^2a-1-cos^2a\right)=1+1-1=1\)

17 tháng 11 2021

\(\sin^2\alpha+\cos^2\alpha=1\\ \Rightarrow\cos^2\alpha=1-0,6^2=0,64\\ \Rightarrow\cos\alpha=0,8=\dfrac{4}{5}\\ \tan\alpha=\dfrac{\sin\alpha}{\cos\alpha}=\dfrac{0,6}{0,8}=\dfrac{3}{4}\\ \cot\alpha=\dfrac{1}{\tan\alpha}=\dfrac{1}{0,75}=\dfrac{4}{3}\)

12 tháng 9 2015

Bài 1 :

\(C=cos^2a\left(cos^2a+sin^2a\right)+sin^2a=cos^2a+sin^2a=1\)

 

 

21 tháng 7 2021

`sin^2 α+cos^2α=1`

`<=> (2/3)^2+cos^2α=1`

`=> cosα= \sqrt5/3`

`=> tan α=(sinα)/(cosα) = (2\sqrt5)/5`

`=> cota = 1/(tanα)=sqrt5/2`