Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\) và \(\Delta MNP\) có:
\(\begin{array}{l}AB = MN\\BC = NP\\AC = MP\end{array}\)
Vậy\(\Delta ABC\) =\(\Delta MNP\)(c.c.c)
Xét \(\Delta DEF\) và \(\Delta GHK\) có:
\(\begin{array}{l}DE = GH\\EF = HK\\DF = GK\end{array}\)
Vậy\(\Delta DEF\)=\(\Delta GHK\) (c.c.c)
Vì \(\widehat{BAE}=\widehat{CDE}=90^0 (gt)\)
`->` Tam giác `ABE` vuông tại `A,` Tam giác `ECD` vuông tại `D.`
Xét Tam giác `ABE:`\(\widehat{A}=90^0\) `->` 2` góc \(\widehat{B}\) và \(\widehat{E}\) phụ nhau
`->`\(\widehat{ABE}+\widehat{AEB}=90^0\) `->`\(\widehat{ABE}=90^0-\widehat{AEB}\)
Xét Tam giác `DEC:`\(\widehat{D}=90^0\) `->` \(\widehat{E}\) và \(\widehat{C}\) phụ nhau
`->`\(\widehat{DCE}+\widehat{DEC}=90^0\) `->`\(\widehat{DCE}=90^0-\widehat{DEC}\)
Mà \(\widehat{AEB}=\widehat{DEC}\) `(2` góc đối đỉnh `)`
`->`\(90^0-\widehat{DEC}=90^0-\widehat{AEB}\) `->`\(\widehat{ABE}=\widehat{DCE}\)
Xét Tam giác `DEC` và Tam giác `AEB:`
`AB=CD`
\(\widehat{ABE}=\widehat{DCE}\)
`=>` Tam giác `DEC =` Tam giác `AEB (cgv-gn)`
xét tam giác MKQ và tam giác MPN có
góc QMN = góc PMN = 90 độ
góc K = góc MPN (gt)
QK=PN (gt)
Suy ra tam giác MKQ = tam giác MPN (cạnh huyền - góc nhọn)
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP}\) (gt)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Xét tam giác MNP có:
\(\begin{array}{l}\widehat M + \widehat N + \widehat P = {180^o}\\ \Rightarrow \widehat M + {50^o} + {70^o} = {180^o}\\ \Rightarrow \widehat M = {60^o}\end{array}\)
Xét 2 tam giác ABC và MNP có:
AB=MN (gt)
\(\widehat {BAC} = \widehat {NMP} (=60^0)\)
AC=MP (gt)
Vậy \(\Delta ABC = \Delta MNP\)(c.g.c)
Hãy chỉ ra các cặp tam giác bằng nhau trong Hình 13 và cho biết chúng bằng nhau theo trường hợp nào.
a) Ta thấy tam giác MNQ = tam giác MPQ (c-c-c)
b) Ta thấy tam giác GHK = tam giác GIK (c-g-c)
c) Ta thấy tam giác ADB = tam giác ACE (g-c-g)
Tam giác ADC = tam giác AEB (g-c-g)
Hãy chỉ ra các cặp tam giác bằng nhau trong Hình 22 và cho biết chúng bằng nhau theo trường hợp nào.
+) Xét \(\Delta{ABD}\) vuông tại B và \(\Delta{ACD}\) vuông tại D có:
AD chung
\(\widehat {BAD} = \widehat {DAC}\) (gt)
\( \Rightarrow \Delta{ABD}=\Delta{ACD}\) (cạnh huyền – góc nhọn)
\( \Rightarrow \) BD = CD, AB = AC ( 2 cạnh tương ứng)
\( \widehat {BDA} = \widehat {ADC}\)( 2 góc tương ứng)
+) Xét \(\Delta{BED}\) vuông tại B và \(\Delta{CHD}\) vuông tại C có:
BD = CD (cmt)
\(\widehat {BDE} = \widehat {CDH}\)( 2 góc đối đỉnh )
\( \Rightarrow \Delta{BED}=\Delta{CHD \) (cạnh góc vuông - góc nhọn kề )
+) Ta có: \(\widehat {BDA} + \widehat {BDE}\)= \(\widehat {ADE}\)
\(\widehat {ADC} + \widehat {CDH}\)= \(\widehat {ADH}\)
Mà \(\widehat {BDA} = \widehat {ADC}\), \(\widehat {BDE} = \widehat {CDH}\)
\( \Rightarrow \widehat {ADE} = \widehat {ADH}\)
Xét \(\Delta{ADE}\) và \(\Delta{ADH}\) có:
\(\widehat {BAD} = \widehat {DAC}\) (gt)
AD chung
\(\widehat {ADE} = \widehat {ADH}\) (cmt)
\( \Rightarrow \Delta{ADE}=\Delta{ADH}\)( g – c – g )
+) Xét \(\Delta{ABH}\) vuông tại B và \(\Delta{ACE}\) vuông tại C có:
AB = AC (cmt)
\(\widehat {BAH}\) chung
\( \Rightarrow \Delta{ABH}=\Delta{ACE}\) (cạnh góc vuông – góc nhọn kề)
Xét tam giác ABC và tam giác ABD có:
\(\widehat{ACB}=\widehat{ACD}\\ CB=CD\\ AC:cạnhchung\)
=>\(\Delta ABC=\Delta ABD\left(c.g.c\right)\)
∆ABC = ∆ADC (c-g-c) vì:
AC là cạnh chung
BC = CD (gt)
∠ACB = ∠ACD (gt)