Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) \(x+y+9=xy-7\)
=> \(x+y+16=xy=>x+16=xy-y=y.\left(x-1\right)\)
\(=>y=\frac{x+16}{x-1}\) (x khác 1)
Mà do y thuộc Z => \(\frac{x+16}{x-1}\in Z=>x+16⋮x-1=>\left(x-1\right)+17⋮x-1=>x-1\inƯ\left(17\right)=\left\{\pm1;\pm17\right\}\)
\(=>x\in\left\{0;2;-16;18\right\}\) (Thỏa mãn do khác 1)
*) Nếu x=0 => 16+y=0=> y=-16.
*) Nếu x=2 => 18+y=2y=> y=18
*) Nếu x=-16 => y=-16y => y=0
*) Nếu x=18 => y=2
Vậy (x,y)=.....
a 25 - y^2 = 8(x-2009)
=> 5^2 - y^2 = 8x - 8*2009
=> (5^2 - y^2) - ( 8x - 8*2009) = 0
=> 5^2 - y^2 = 0 và 8x - 8*2009 = 0
=> 5^2 = y^2 và 8x = 8*2009
=> y=5 và x=2009
c. x+y+9=xy-7
=> 9+7=xy-x-y
=> xy-x-y=16
=> x(y-1)-(y-1)=17
=> (y-1)(x-1)=17
Mà x,y là số tự nhiên
=> (y-1)(x-1)=1.17=17.1
•y-1=1;x-1=17=> y=2; x=18
• y-1=17; x-1=1=> y=18; x=2
Vậy (x;y) là (18;2) hoặc (2;18)
a)Ta có
25 - y^2 = 8(x-2009)^2
Dễ dàng thấy rằng vế phải luôn dương.Nên vế trái phải dương.Nghĩa là 25-y^2 >=0
Mặt khác do
8(x-2009)^2 chia hết cho 2.Như vậy Vế phải luôn chẳn
Do đó y^2 phải lẻ.( hiệu hai số lẽ là 1 số chẳn.hehe)
Do vậy chỉ tồn tại các giá trị sau
y^2 = 1, y^2 = 9, y^2 = 25
y^2 = 1; (x-2009)^2 = 3 (loại)
y^2 = 9; (x-2009)^2 = 2 (loại)
y^2 = 25; (x-2009)^2 = 0; x = 2009
Vậy pt có nghiệm sương (2009 , 5)
Có: \(x+y+9=xy-7\)
\(\Leftrightarrow x+16=y\left(x-1\right)\)
\(\Leftrightarrow\frac{x+16}{x-1}=y\)
\(\Leftrightarrow y=1+\frac{17}{x-1}\in Z\Leftrightarrow x-1\inƯ\left(17\right)\)
Bn giải x ra rồi tính y
b) \(x^3y=xy^3+1997\)
\(\Leftrightarrow xy\left(x-y\right)\left(x+y\right)=1997\)
Phân tích 1997=1*1997 và ngược lại chia TH giải
theo minh thấy bạn nên hỏi từng câu thì sẽ dễ giải hơn ý
`Answer:`
a. \(25-y^2=8\)
\(\Leftrightarrow y^2=25-8\)
\(\Leftrightarrow y^2=17\)
\(\Leftrightarrow y=\sqrt{17}\)
b. \(x^3y=xy^3+1997\)
\(\Leftrightarrow x^3y-xy^3=1997\)
\(\Leftrightarrow xy\left(x^2-y^2\right)=1997\)
\(\Leftrightarrow xy\left(x+y\right)\left(x-y\right)=1997\)
Ta có:
`1997` là số nguyên tố
`xy(x+y)(x-y)` là hợp số
`=>` Không tìm được `x,y` thoả mãn.
c. \(x+y+9=xy-7\)
\(\Leftrightarrow x-xy+y=-16\)
\(\Leftrightarrow x\left(1-y\right)-1+y=16-1\)
\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=-17\)
\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=-17\)
Ta có: \(-17=\left(-17\right).1=1.\left(-17\right)=17.\left(-1\right)=\left(-1\right).17\)
Trường hợp 1: \(\left(x-1\right)\left(1-y\right)=\left(-17\right).1\)
\(\Leftrightarrow\hept{\begin{cases}x=-16\\y=0\end{cases}}\)
Trường hợp 2: \(\left(x-1\right)\left(1-y\right)=1.\left(-17\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=18\end{cases}}\)
Trường hợp 3: \(\left(x-1\right)\left(1-y\right)=17.\left(-1\right)\)
\(\Leftrightarrow\hept{\begin{cases}x=18\\y=2\end{cases}}\)
Trường hợp 4: \(\left(x-1\right)\left(1-y\right)=\left(-1\right).17\)
\(\Leftrightarrow\hept{\begin{cases}x=0\\y=-16\end{cases}}\)
Vậy \(\left(x,y\right)=\left(-16,0\right);\left(2,18\right);\left(18,2\right);\left(0,-16\right)\)