Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^2+3^3+...+3^{99}\)
\(3B=3^3+3^4+...+3^{100}\)
\(3B-B=\left(3^3+3^4+...+3^{100}\right)-\left(3^2+3^3+...+3^{99}\right)\)
\(2B=3^{100}-3^2\)
\(B=\frac{3^{100}-9}{2}\)
\(2B+9=3^{2n+4}\)
\(\Leftrightarrow3^{2n+4}=3^{100}\)
\(\Leftrightarrow2n+4=100\)
\(\Leftrightarrow n=48\).
a,bc = 10 : (a+b+c)
=> a,bc x (a+b+c) = 10
=> abc x ( a+b+c) = 1000
=> 1000 \(⋮abc\)
=> abc thuộc Ư(1000) = { 125,100,250,200,500}
Mà chỉ 125 thỏa mãn yêu cầu đề.
Vậy a,bc là 1,25
Ta có: B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<1 ( Vì 172009+1< 172010+1 )
Nên B=\(\frac{17^{2009}+1}{17^{2010}+1}\)<\(\frac{17^{2009}+1+16}{17^{2010}+1+16}\)
=\(\frac{17^{2009}+17}{17^{2010}+17}\)
=\(\frac{17\left(17^{2008}+1\right)}{17\left(17^{2009}+1\right)}\)
=\(\frac{17^{2008+1}}{17^{2009}+1}\)=A
Vậy A>B
Bạn xem ở đây nhé:
Câu hỏi của Vũ Huy Hiệu - Toán lớp 6 - Học toán với OnlineMath
Vì trong bài abc=11x(a+b+c)
Suy ra 100a+10b+c=11a+11b+11c
Từ đó suy ra 89a=10+b.c
Vì b và c chỉ có số lớn nhất là 9 cho nên suy ra là a phải bằng 1
Khi đó:89x1=b+10c
Suy ra 89-10c
mà c=9 thì 10.9=90 mà 89-90=-1 mà -1 không thuộc tập hợp số tự nhiên nên c=8
Nếu c=8 thì 1c8\(⋮\)11
Suy ra b=9
Vậy 198:11=100+80+9
26/27 < 96 /97