Cho các số thực a,b không âm thoả mãn: a + b = \(\dfrac{1}{2}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 5 2023

*Tìm min:

\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{1}{1-a}-1+\dfrac{1}{1-b}-1\)

\(\ge\dfrac{4}{\left(1-a\right)+\left(1-b\right)}-2\)

\(=\dfrac{4}{2-\dfrac{1}{2}}-2=\dfrac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=\dfrac{1}{4}\). Do đó minP=2/3

*Tìm max: \(a,b\ge0\)

\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{a-ab+b-ab}{\left(1-a\right)\left(1-b\right)}\)

\(=\dfrac{\dfrac{1}{2}-2ab}{1-\left(a+b\right)+ab}=\dfrac{\dfrac{1}{2}-2ab}{\dfrac{1}{2}+ab}=\dfrac{\dfrac{3}{2}-2\left(\dfrac{1}{2}+ab\right)}{\dfrac{1}{2}+ab}\)

\(=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}+ab}-2\le\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}-2=1\)

Dấu "=" xảy ra khi \(\left(a;b\right)=\left(0;\dfrac{1}{2}\right),\left(\dfrac{1}{2};0\right)\)

Vậy maxP=1

30 tháng 9 2020

Ta có :  \(\frac{a}{a+1}=\frac{a^2+a-a^2}{a+1}=\frac{a\left(a+1\right)}{a+1}-\frac{a^2}{a+1}=a-\frac{a^2}{a+1}\)

Tương tự và cộng theo vế ta được : \(P=a+b+c-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\)

\(=1-\left(\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\right)\ge1-\frac{\left(a+b+c\right)^2}{a+b+c+3}=1-\frac{1}{4}=\frac{3}{4}\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{3}\)Vậy GTNN của P = 3/4 đạt được khi a=b=c=1/3

17 tháng 4 2018

Ta CM BĐT \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)

\(\Rightarrow a+b\ge\frac{\left(a+b\right)^2}{2}\)(do a2+b2=a+b) 

\(\Rightarrow2\ge a+b\) 

Ta có: \(S=\frac{a}{a+1}+\frac{b}{b+1}=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\)

Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Rightarrow\frac{1}{a+1}+\frac{1}{b+1}\ge\frac{4}{a+1+b+1}\ge1\)

\(\Rightarrow S=2-\left(\frac{1}{a+1}+\frac{1}{b+1}\right)\le1\) 

Dấu "=" xảy ra khi: a=b=1

17 tháng 4 2022

CM BĐT kiểu j ạ

20 tháng 12 2018

Bài 2:

a) \(A=\dfrac{a^2}{bc}+\dfrac{b^2}{ca}+\dfrac{c^2}{ab}\)

\(A=\dfrac{a^3}{abc}+\dfrac{b^3}{abc}+\dfrac{c^3}{abc}\)

\(A=\dfrac{1}{abc}\left(a^3+b^3+c^3\right)\)

\(A=\dfrac{1}{abc}\left[\left(a+b\right)^3-3ab\left(a+b\right)+c^3\right]\)

\(a+b+c=0\)

Nên a + b = -c (1)

Thay (1) vào A, ta được:

\(A=\dfrac{1}{abc}\left[\left(-c\right)^3-3ab\left(-c\right)+c^3\right]\)

\(A=\dfrac{1}{abc}.3abc\)

\(A=3\)

b) \(B=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)

\(B=\dfrac{a^2}{a^2-\left(b^2+c^2\right)}+\dfrac{b^2}{b^2-\left(c^2+a^2\right)}+\dfrac{c^2}{c^2-\left(a^2+b^2\right)}\)

\(a+b+c=0\)

Nên b + c = -a

=> ( b + c )2 = (-a)2

=> b2 + c2 + 2bc = a2

=> b2 + c2 = a2 - 2bc (1)

Tương tự ta có: c2 + a2 = b2 - 2ac (2)

a2 + b2 = c - 2ab (3)

Thay (1), (2) và (3) vào B, ta được:

\(B=\dfrac{a^2}{a^2-\left(a^2-2bc\right)}+\dfrac{b^2}{b^2-\left(b^2-2ac\right)}+\dfrac{c^2}{c^2-\left(c^2-2ab\right)}\)

\(B=\dfrac{a^2}{a^2-a^2+2bc}+\dfrac{b^2}{b^2-b^2+2ac}+\dfrac{c^2}{c^2-c^2+2ab}\)

\(B=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)

\(B=\dfrac{a^3}{2abc}+\dfrac{b^3}{2abc}+\dfrac{c^3}{2abc}\)

\(B=\dfrac{1}{2abc}\left(a^3+b^3+c^3\right)\)

\(a^3+b^3+c^3=3abc\) ( câu a )

\(\Rightarrow B=\dfrac{1}{2abc}.3abc\)

\(\Rightarrow B=\dfrac{3}{2}\)

20 tháng 12 2018

Bài 1:

a) GT: abc = 2

\(M=\dfrac{a}{ab+a+2}+\dfrac{b}{bc+b+1}+\dfrac{2c}{ac+2c+2}\)

\(M=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{abc+2cb+2b}\)

\(M=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2+2cb+2b}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{2cb}{2\left(1+cb+b\right)}\)

\(M=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(M=\dfrac{1+b+bc}{bc+b+1}\)

\(M=1\)

b) GT: abc = 1

\(N=\dfrac{a}{ab+a+1}+\dfrac{b}{bc+b+1}+\dfrac{c}{ac+c+1}\)

\(N=\dfrac{a}{ab+a+abc}+\dfrac{b}{bc+b+1}+\dfrac{cb}{b\left(ac+c+1\right)}\)

\(N=\dfrac{a}{a\left(b+1+bc\right)}+\dfrac{b}{bc+b+1}+\dfrac{bc}{abc+bc+b}\)

\(N=\dfrac{1}{bc+b+1}+\dfrac{b}{bc+b+1}+\dfrac{bc}{bc+b+1}\)

\(N=\dfrac{1+b+bc}{bc+b+1}\)

\(N=1\)

29 tháng 2 2016

\(\frac{a}{b}+\frac{b}{a}=\frac{a^2}{ab}+\frac{b^2}{ab}=\frac{a^2+b^2}{ab}\ge2\)

Vậy Min A = 2 \(\Leftrightarrow a=b\)