Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Hai phương trình tương đương là 2 phương trình có cùng 1 tập nghiệm
2)\(\left(2x+1\right)\Leftrightarrow\left(4x+2\right)\)
\(\left(2x+1\right).\dfrac{1}{x-2}\ne\left(4x+2\right).\dfrac{1}{x-2}\)
3) ĐK: \(a\ne0\)
4) Mình trình bày ngắn gon nhen
B1: Tìm ĐKXĐ
B2: Qui Đồng
B3: Tinh kết quả xem có thõa mãn điều kiện hay không
B4: Kết luận tập nghiệm của PT
a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*
a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm
\(P=\dfrac{15x^5y^3-10x^3y^2+20x^4y^4}{5x^2y^2}\)
\(=\dfrac{15x^5y^3}{5x^2y^2}-\dfrac{10x^3y^2}{5x^2y^2}+\dfrac{20x^4y^4}{5x^2y^2}\)
\(=3x^3y-2x+4x^2y^2\)
Khi x=-1 và y=2 thì \(P=3\cdot\left(-1\right)^3\cdot2-2\cdot\left(-1\right)+4\cdot\left(-1\right)^2\cdot2^2\)
\(=-6+2+16=4+16=20\)