Giải phương trình : (21/x^2-4x+10) -x^2-4x-4=0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

PT <=> (x2-4x+6)(x2-4x+10)=21

<=> x4-4x3+10x2-4x3+16x2-40x+6x2-24x+60-21=0

<=> x4-8x3+32x2-64x+39=0

<=> x4-x3-7x3+7x2+25x2-25x-39x+39=0

<=> x3(x-1)-7x2(x-1)+25x(x-1)-39(x-1)=0

<=> (x-1)(x3-7x2+25x-39)=0

<=> (x-1)(x3-3x2-4x2+12x+13x-39)=0

<=> (x-1)[x2(x-3)-4x(x-3)+13(x-3)]=0

<=> (x-1)(x-3)(x2-4x+13)=0

Nhận thấy: x2-4x+13 > 0 với mọi x

=> Phương trình có nghiệm là: \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x_1=1\\x_2=3\end{cases}}\)

6 tháng 11 2018

x²-4x+6=√(2x²-5x+3) - √(-3x²+9x-5). 
Ta sẽ dùng đánh giá hai vế như sau : 
VT = x²-4x+6 = x²-4x+4 + 2 = (x-2)² + 2 ≥ 2. 
Dấu = xảy ra khi x = 2. 

VP = √(2x²-5x+3) - √(-3x²+9x-5) 
Áp dụng bất đẳng thức Bunhia Copxki ta có: 
VP = √(2x²-5x+3) - √(-3x²+9x-5) ≤ √[(1² + 1²).(2x²-5x+3 - 3x²+9x-5)] = √[2.(-x²+4x-2)] 
Mà: -x²+4x-2 = - ( x² - 4x+4) + 2 = -(x-2)² + 2 ≤ 2. 
Do đó: VP ≤ √( 2.2) = √4 = 2. 
Dấu = xảy ra khi x = 2. 

Ta có: VT ≥ 2 ; VP ≤ 2 => VT = VP = 2 khi x = 2. 
Vậy x = 2 là nghiệm của phương trình. 
 

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

9 tháng 4 2017

1/ y(y+4)=21 ->  y^2 +4y -21=0  -> (y-3)(y+7)=0

VẬY y=3, -7.

2/???

3/(y-4)(y-1)=0 -> y=4, 1

THOI, MAY CAI CO BAN SGK CUNG HOI.DẸP, TỰ LÀM NỐT ĐI, DỄ MÀ.

XONG BẤM ĐÚNG CHO MÌNH

15 tháng 6 2020

Đặt: \(x^2+4x+10=t\)

Ta có bất phương trình: 

\(t^2-7\left(t+1\right)+7< 0\)

<=> \(t^2-7t< 0\)

<=> \(t\left(t-7\right)< 0\)

TH1: \(\hept{\begin{cases}t< 0\\t-7>0\end{cases}}\Leftrightarrow\hept{\begin{cases}t< 0\\t>7\end{cases}}\)vô lí

Th2: \(\hept{\begin{cases}t>0\\t-7< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}t>0\\t< 7\end{cases}}\Leftrightarrow0< t< 7\)

Với 0 < t < 7 ta có: 

\(0< x^2+4x+10< 7\)

<=> \(0< \left(x+2\right)^2+6< 7\)

<=> \(\left(x+2\right)^2< 1\)

<=> \(-1< x+2< 1\)

<=> - 3 < x < -1

Kết luận:...

4 tháng 3 2019

pT <=>\(\frac{x^4}{\left(x-2\right)^2}+\frac{x^2}{x-2}-2=0\)

đk: x khác 2

Đặt \(\frac{x^2}{x-2}=t\)

Ta có phương trình:

\(t^2+t-2=0\Leftrightarrow t^2+2t-t-2=0\Leftrightarrow t\left(t+2\right)-\left(t+2\right)=0\Leftrightarrow\left(t+2\right)\left(t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)

Với t=2 ta có:

\(\frac{x^2}{x-2}=2\Leftrightarrow x^2=2x-4\Leftrightarrow x^2-2x+4=0\Leftrightarrow\left(x-1\right)^2+3=0\)vô lí

Với t=-2:

\(\frac{x^2}{x-2}=-2\Leftrightarrow x^2=-2x+4\Leftrightarrow x^2+2x=4\Leftrightarrow\left(x+1\right)^2=5\Leftrightarrow\orbr{\begin{cases}x+1=\sqrt{5}\\x+1=-\sqrt{5}\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{cases}}\)(tm)

Vậy...