Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(10-2n⋮n-2\)\(\Rightarrow2n-10⋮n-2\)\(\Rightarrow2n-4-6=2\left(n-2\right)-6⋮n-2\)(1)
Vì \(2\left(n-2\right)⋮n-2\)\(\Rightarrow\)Để xảy ra (1) thì \(-6⋮n-2\)\(\Rightarrow n-2\inƯ\left(-6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(\Rightarrow n\in\left\{1;3;0;4;-1;5;-4;8\right\}\)
mà \(n\inℕ\)\(\Rightarrow n\in\left\{0;1;3;4;5;8\right\}\)
Vậy \(n\in\left\{0;1;3;4;5;8\right\}\)
câu 1 : x = 7;4;3
nếu : x-1=6
=> x=7
nếu : x-1=3
=> x=4
nếu : x-1=2
=> x=3
Vậy : x thuộc tập hợp gồm 3 phần tử là : 7;3;4
a)
\(6⋮x-1\Rightarrow x-1\inƯ\left(6\right)=\left\{1;2;3;6\right\}\)
\(x-1=1\Rightarrow x=2\)
\(x-1=2\Rightarrow x=3\)
\(x-1=3\Rightarrow x=4\)
\(x-1=6\Rightarrow x=7\)
Vậy \(x\in\left\{2;3;4;7\right\}\)
b)
\(14⋮2x+3\Rightarrow2x+3\inƯ\left(14\right)=\left\{1;2;7;14\right\}\)
Vì 2x + 3 là số lẻ và \(2x+3\ge3\Rightarrow2x+3=7\)
\(2x+3=7\)
\(\Rightarrow2x=7-3\)
\(\Rightarrow2x=4\)
\(\Rightarrow x=2\)
Vậy \(x=2\)
Khoảng cách là 3 đơn vị
Số thứ 23 là : 3 x (23 - 1) + 4 = 70
\(S=4+7+10+13+...+145+148\)
A.
Số số hạng thứ 23 của S:
\(\frac{x-4}{3}+1=23\)
\(\Rightarrow\frac{x-4}{3}=22\)
\(\Rightarrow x-4=22.3\)
\(\Rightarrow x-4=66\)
\(\Rightarrow x=4+66\)
\(\Rightarrow x=70\)
B.
Có số hạng của dãy số S: \(\frac{148-4}{3}+1=49\)số hạng
Tổng dãy số S: \(\left(148+4\right).32:2=2432\)
Bài 4: b) Vì n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp.
=> Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(n+2) chia hết cho cả 2 và 3.
c) Ta có: n(n+1)(2n+1)=n(n+1)[(n+2)+(n-1)]
=n(n+1)(n+2)+n(n+1)(n-1)
Nhận thấy: n(n+1)(n+2) và n(n+1)(n-1) là tích của 3 số tự nhiên liên tiếp
=>Tồn tại 1 số chia hết cho 2.
Tồn tại 1 số chia hết cho 3.
=> n(n+1)(2n+1) chia hết cho 2 và 3.
bài 3 nah không biết đúng hông nữa
n=20a20a20a=20a20a.1000+20a=(20a.1000+20a).1000+20a=1001.20a.1000+20a
theo đề bài n chia hết cho 7,mà 1001 chia hết cho 7 nên 20a chia hết cho 7
ta có 20a = 196+(4+a),chia hết cho 7 nên 4 + a chia hết cho 7 .Vậy a = 3
b: \(2n+8⋮n-1\)
=>\(2n-2+10⋮n-1\)
=>\(10⋮n-1\)
=>\(n-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)
=>\(n\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)
mà n là số tự nhiên
nên \(n\in\left\{2;0;3;6;11\right\}\)
a: \(S=1+2^2+2^4+...+2^{100}\)
=>\(4\cdot S=2^2+2^4+2^6+...+2^{102}\)
=>\(4\cdot S-S=2^2+2^4+2^6+...+2^{102}-1-2^2-2^4-...-2^{100}\)
=>\(3\cdot S=2^{102}-1\)
=>\(S=\dfrac{2^{102}-1}{3}\)