cho tam giác abc vuông tại a (ab<ac) gọi m,n lần lượt là trung điểm của bc,ac
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có 

M là trung điểm của BC

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//AB

Xét tứ giác ANMB có MN//AB

nên ANMB là hình thang

mà \(\widehat{NAB}=90^0\)

nên ANMB là hình thang vuông

b: Xét tứ giác AMCD có

N là trung điểm của AC
N là trung điểm của MD

Do đó; AMCD là hình bình hành

mà MA=MC

nên AMCD là hình thoi

5 tháng 12 2017

a. Xét tam giác HCD cóHN=DN;HM=CM 

=> MN là đường trung bình của tam giác HCD => MN//DC

=> DNMC là hình thang

b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD

Mà AB=1/2CD => AB =MN

Do MN//CD và AB//CD => AB//MN

Xét tứ giác ABMN có AB//MN; AB=MN

=> ABMN là hình bình hành

c.Ta có MN//CD mà CD vg AD

=> MN vg AD

Xét tam giác ADM có DH và MN là 2 đường cao của tam giác 

Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM

=> AN là đường cao của tam giác ADM

=> AN vg DM

Do ABMN là hình bình hành nên AN//BM

=> BM vg DM => BMD =90*

14 tháng 12 2017

a)  BD, CE là các đường trung tuyến của \(\Delta ABC\)

\(\Rightarrow\)DA = DC;   EA =EB

\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)

\(\Rightarrow\)ED // BC;  ED = 1/2 BC

\(\Delta GBC\)có   MG = MB;   NG = NC

\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)

\(\Rightarrow\)MN // BC;   MN = 1/2 BC

suy ra:  MN // ED;    MN = ED

\(\Rightarrow\)tứ giác MNDE là hình bình hành

c) MN = ED = 1/2 BC

\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)\(\frac{BC}{2}\)= BC

a: Xét tứ giác AEDF có \(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)

nên AEDF là hình chữ nhật

b: Ta có: D và M đối xứng nhau qua AB

nên AB là đường trung trực của DM

=>AB vuông góc với DM tại trung điểm của DM

hay E là trung điểm của DM

Ta có: D và N đối xứng nhau qua AC

nên AClà đường trung trực của DN

=>AC vuông góc với DN tại trung điểm của DN

hay F là trung điểm của DN

Xét ΔABC có 

D là trung điểm của BC

DE//AC

DO đó: E là trung điểm của AB

Xét ΔABC có

D là trung điểm của BC

DF//AB

Do đó: F là trung điểm của CA

Xét tứ giác ADBM có 

E là trung điểm của AB

E là trung điểm của DM

Do đó: ADBM là hình bình hành

mà DA=DB

nên ADBM là hình thoi

Xét tứ giác ADCN có 

F là trung điểm của AC

F là trung điểm của DN

Do đó: ADCN là hình bình hành

mà DA=DC

nên ADCN là hình thoi

15 tháng 2 2020

A B C D M N E

a, xét tứ giác  AMDN có : 

góc BAC = góc DMA = góc AND = 90 (gt)

=> AMDN là hình chữ nhật (dấu hiệu)

b,  AMDN là hình chữ nhật (câu a)

=> AN // DM hay AN // ME     (1)

AMDN là hình chữ nhật => AN = MD (tc)

MD = ME do E đối xứng cới D qua M (gt)

=> AN = ME   và (1)

=> AEMN là hình bình hành (dấu hiệu)

=> AN // ME (đn)

c, AMDN là hình chữ nhật (câu a)

để AMDN là hình vuông

<=> DN = DM (dh)               (2)

có D là trung điểm của BC (gt)

DN // AB do AMDN là hình chữ nhật

=> DN là đường trung bình của tam giác ABC 

=> DN = AB/2 (tc)

tương tự có DM = AC/2      và (2)

<=> AB/2 = AC/2

<=> AB = AC 

 tam giác ABC vuông tại A gt)

<=> tam giác ABC vuông cân tại A

vậy cần thêm đk tam giác ABC vuông để AMDN là hình vuông 

+ vì AMDN là hình vuông

=> MN _|_ AD (tc)

=> S AMDN = NM.AD : 2 (Đl)     

tam giác ABC vuông tại A có AD _|_ BC 

=> S ABC = AD.BC : 2   (đl)      (3)

BC = 2NM do NM là đường trung bình của tam giác ABC   và (3)

=> S ABC =  AD.2MN : 2

=> S ABC = 2S AMDN

12 tháng 1 2017

Bạn tự vẽ hình nha !

a) Theo đề, ta có:

N là điểm đối xứng với M qua I

mà I là trung điểm của AC hay I thuộc AC

=> N đối xứng với M qua AC.

b) Xét tam giác ABC có:

BM = CM (gt)

AI = CI (gt)

=> MI là đường trung bình của tam giác ABC

=> MI//AB

mà AB vuông góc với AC

=> MI vuông góc AC

Xét tứ giác ANCM có:

MI = NI (gt)

AI = CI (gt)

=> tứ giác ANCM là hình bình hành có MI vuông góc với AC

=> ANCM là hình thoi

c) Hình thoi ANCM là hình vuông khi đường chéo AM là phân giác của góc A

Tam giác ABC có AM vừa là phân giác vừa là trung tuyến nên tam giác ABC cân tại A .

Vậy điều kiện để ANCM là hình vuông là tam giác ABC vuông cân tại A.

XONG!!! okok

27 tháng 12 2021

a) Xét tứ giác AMIN có:

∠(MAN) = ∠(ANI) = ∠(IMA) = 90o

⇒ Tứ giác AMIN là hình chữ nhật (có 3 góc vuông).

b) ΔABC vuông có AI là trung tuyến nên AI = IC = BC/2

do đó ΔAIC cân có đường cao IN đồng thời là đường trung tuyến

⇒ NA = NC.

Mặt khác ND = NI (t/c đối xứng) nên ADCI là hình bình hành

Lại có AC ⊥ ID (gt). Do đó ADCI là hình thoi.

c) Ta có: AB2 = BC2 – AC2 (định lí Py-ta-go)

= 252 – 202 ⇒ AB = √225 = 15 (cm)

Vậy SABC = (1/2).AB.AC = (1/2).15.20 = 150 (cm2)

d) Kẻ IH // BK ta có IH là đường trung bình của ΔBKC

⇒ H là trung điểm của CK hay KH = HC (1)

Xét ΔDIH có N là trung điểm của DI, NK // IH (BK // IH)

Do đó K là trung điểm của DH hay DK = KH (2)

Từ (1) và (2) ⇒ DK = KH = HC ⇒ DK/DC= 1/3.